留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功率级无刷直流电动机四象限运行模拟器设计

张磊 郭宏 徐金全

张磊, 郭宏, 徐金全等 . 功率级无刷直流电动机四象限运行模拟器设计[J]. 北京航空航天大学学报, 2021, 47(10): 2043-2057. doi: 10.13700/j.bh.1001-5965.2020.0441
引用本文: 张磊, 郭宏, 徐金全等 . 功率级无刷直流电动机四象限运行模拟器设计[J]. 北京航空航天大学学报, 2021, 47(10): 2043-2057. doi: 10.13700/j.bh.1001-5965.2020.0441
ZHANG Lei, GUO Hong, XU Jinquanet al. Design of four-quadrant power hardware-in-the-loop brushless DC motor emulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2043-2057. doi: 10.13700/j.bh.1001-5965.2020.0441(in Chinese)
Citation: ZHANG Lei, GUO Hong, XU Jinquanet al. Design of four-quadrant power hardware-in-the-loop brushless DC motor emulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2043-2057. doi: 10.13700/j.bh.1001-5965.2020.0441(in Chinese)

功率级无刷直流电动机四象限运行模拟器设计

doi: 10.13700/j.bh.1001-5965.2020.0441
基金项目: 

国家自然科学基金 51707004

航空科学基金 2016ZC51025

中央高校基本科研业务费专项资金 YWF18BJY166

详细信息
    通讯作者:

    徐金全, E-mail: xujinquan@buaa.edu.cn

  • 中图分类号: TM344

Design of four-quadrant power hardware-in-the-loop brushless DC motor emulator

Funds: 

National Natural Science Foundation of China 51707004

Aeronautical Science Foundation of China 2016ZC51025

the Fundamental Research Funds for the Central Universities YWF18BJY166

More Information
  • 摘要:

    针对无刷直流电动机(BLDCM)驱动控制器在研发过程中全工况测试困难、测试成本高和研发周期长的问题,提出了一种采用分区间采样和解算方法的、具有四象限运行能力的功率级(PHIL)无刷直流电动机模拟器,替代实物电动机和机械负载装置完成对两两导通控制方式下无刷直流电动机驱动控制器的各项性能测试与可靠性试验。该模拟器由实时仿真器、电动机模拟变换器和多级式双向变换器3部分组成,实时仿真器负责采集被测电动机驱动控制器输出的PWM电压,实时解算电动机模型得到三相电流指令,控制电动机模拟变换器生成三相电流,多级式双向变换器负责维持模拟器输入、输出间的能量平衡关系,从而实现对四象限运行时无刷直流电动机的功率级模拟。实验结果表明:所提出的功率级无刷直流电动机模拟器模拟精度高、实时性好、测试灵活,能够有效替代实物电动机和机械负载装置,满足电动机驱动控制器的测试需求。

     

  • 图 1  功率级无刷直流电动机模拟器拓扑

    Figure 1.  Topology of power hardware-in-the-loop BLDCM emulator

    图 2  T1T6导通时的电路状态

    Figure 2.  Circuit state while T1T6 conducting

    图 3  T1T6导通向T1T2导通转换过程中的电路状态

    Figure 3.  Circuit state during switching process between T1T6 and T1T2

    图 4  电动机模拟变换器直接电流控制系统结构

    Figure 4.  Structure of direct current control system of motor simulation converter

    图 5  双向DC/DC变换器结构

    Figure 5.  Structure of bi-directional DC/DC converter

    图 6  能量回馈变换器控制系统结构

    Figure 6.  Structure of control system of energy feedback converter

    图 7  功率级无刷直流电动机模拟器程序流程

    Figure 7.  Program flowchart of power hardware-in-the-loop BLDCM emulator

    图 8  功率级无刷直流电动机模拟器图形化程序

    Figure 8.  Graphical program of power hardware-in-the-loop BLDCM emulator

    图 9  功率级无刷直流电动机模拟器实验系统

    Figure 9.  Test system of power hardware-in-the-loop BLDCM emulator

    图 10  电动机实时解算模型实验研究平台

    Figure 10.  Experimental platform for real-time simulation model of BLDCM

    图 11  模型电流计算结果与实物电动机电流测量值

    Figure 11.  Calculation results in model and current measurement results in real BLDCM

    图 12  模拟器900 r/min运行时实验系统测量结果

    Figure 12.  Experimental system measurement results of emulator running at 900 r/min

    图 13  不同转速下的c相电流计算结果与c相电流测量值

    Figure 13.  Calculation results of c-phase current and measured values of c-phase current at different speeds

    图 14  启动时c相电流计算结果与c相电流测量值

    Figure 14.  Calculation results of c-phase current and measured values of c-phase current at start-up

    图 15  给定转速变换时c相电流计算结果与c相电流测量值

    Figure 15.  Calculation results of c-phase current and measured values of c-phase current while reference speed changes

    图 16  模拟器发电运行状态实验结果

    Figure 16.  Experimental results of emulator in power generation state

    图 17  模拟器c相连接支路电流测量值与实物电动机c相绕组电流测量值的对比

    Figure 17.  Comparison between measurement results of c-phase branch current in power hardware-in-the-loop BLDCM emulator and measurement results of c-phase winding current in a real BLDCM

    表  1  无刷直流电动机驱动控制器两两导通控制方式下主电路开关管的6种组合状态

    Table  1.   Six combination states of switches in power electronic converter of BLDCM under two-phase conduction control mode

    组合状态 开关组合 导通相 有效线电压
    T5T6 C+B- uCBuBC
    T1T6 A+B- uABuBA
    T1T2 A+C- uACuCA
    T3T2 B+C- uBCuCB
    T3T4 B+A- uBAuAB
    T5T4 C+A- uCAuAC
    下载: 导出CSV

    表  2  不同开关组合状态下的三相绕组电流解算公式

    Table  2.   Three-phase winding current calculation equations in different combination states of switches

    开关组合 dia(k+1) dib(k+1) dic(k+1)
    T5T6 0
    T1T6 0
    T1T2 0
    T3T2 0
    T3T4 0
    T5T4 0
    下载: 导出CSV

    表  3  转换过程中各相支路电流实时解算公式

    Table  3.   Real-time calculation equations of each phase branch current during switching process

    支路状态 电流方向 电流解算公式 初始值
    持续导通 正向 in(0)=I
    反向 in(0)=-I
    续流导通 正向 in(0)=I
    反向 in(0)=-I
    开通 正向 in(0)=0
    反向 in(0)=0
    注:n代表abc
    下载: 导出CSV

    表  4  实物电动机主要参数

    Table  4.   Main parameters of real BLDCM

    参数 数值
    电枢电阻/Ω 0.42
    转动惯量/(kg·m2) 0.000 33
    反电势系数/(V·(r·min-1)-1) 0.012
    电枢电感/H 0.001 2
    极对数 2
    额定转速/(r·min-1) 2 000
    下载: 导出CSV
  • [1] 匡晓霖, 徐金全, 黄春蓉, 等. 六相永磁同步电动机驱动控制方式[J]. 北京航空航天大学学报, 2019, 45(7): 1361-1369. doi: 10.13700/j.bh.1001-5965.2018.0695

    KUANG X L, XU J Q, HUANG C R, et al. Drive-control modes of six-phase PMSM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1361-1369(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0695
    [2] 刘勇智, 李杰, 鄯成龙. 基于最优角度自适应TSF的SRM直接瞬时转矩控制[J]. 北京航空航天大学学报, 2019, 45(11): 2152-2159. doi: 10.13700/j.bh.1001-5965.2019.0101

    LIU Y Z, LI J, SHAN C L. Direct instantaneous torque control of switched reluctance motor based on optimal angle adaptive TSF[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2152-2159(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0101
    [3] JACK A G, ATKINSON D J, SLATER H J. Real-time emulation for power equipment development. Part 1: Real-time simulation[J]. IEE Proceedings-Electric Power Applications, 1998, 145(2): 92-97. doi: 10.1049/ip-epa:19981753
    [4] SLATER H J, ATKINSON D J, JACK A G. Real-time emulation for power equipment development. Part 2: The virtual machine[J]. IEE Proceedings-Electric Power Applications, 1998, 145(3): 153-158. doi: 10.1049/ip-epa:19981849
    [5] DUFOUR C, LAPOINTE V, BELANGER J. Hardware-in-the-loop closed-loop control of virtual FPGA-coded permanent magnet synchronous motor drives using a rapidly prototyped controller[C]//International Power Electronics and Motion Control Conference. Piscataway: IEEE Press, 2008: 2152-2158.
    [6] SCHMITT A, RICHTER J, GOMMERINGER M, et al. A novel 100 kW power hardware-in-the-loop emulation test bench for permanent magnet synchronous machines with nonlinear magnetics[C]//International Conference on Power Electronics, Machines and Drives. Stevenage: IET, 2016: 1-6.
    [7] LENTIJO S, ARCO S D, MONTI A. Comparing the dynamic performances of power hardware-in-the-loop interfaces[J]. IEEE Transactions on Industrial Electronics, 2010, 57(4): 1195-1207. doi: 10.1109/TIE.2009.2027246
    [8] MOJLISH S, ERDOGAN N, LEVINE D, et al. Review of hardware platforms for real-time simulation of electric machines[J]. IEEE Transactions on Transportation Electrification, 2017, 3(1): 130-146. doi: 10.1109/TTE.2017.2656141
    [9] RALPH M K, TILL B, JOACHIM H. Replacement of electrical (load) drives by a hardware-in-the-loop system[C]//International Aegean Conference on Electrical Machines and Power Electronics and Electro-motion, Joint Conference. Piscataway: IEEE Press, 2011: 17-25.
    [10] GAO J, SONG S, HUANG Y, et al. Implementation and test for the semi-physical real-time simulation of IPMSM based on 3-D inductance table[C]//IEEE Conference and Expo Transportation Electrification Asia-Pacific. Piscataway: IEEE Press, 2014: 1-5.
    [11] SARIKHANI A, MOHAMMED O A. HIL-based finite-element design optimization process for the computational prototyping of electric motor drives[C]//IEEE Power & Energy Society General Meeting. Piscataway: IEEE Press, 2013: 737-746.
    [12] TAVANA N R, DINAVAHI V. Real-time FPGA-based analytical space harmonic model of permanent magnet machines for hardware-in-the-loop simulation[J]. IEEE Transactions on Magnetics, 2015, 51(8): 1-9. https://ieeexplore.ieee.org/document/7061475
    [13] TAVANA N R, DINAVAHI V. Real-time nonlinear magnetic equivalent circuit model of induction machine on FPGA for hardware-in-the-loop simulation[J]. IEEE Transactions on Energy Conversion, 2016, 31(2): 520-530. doi: 10.1109/TEC.2015.2514099
    [14] KRAUSE P C, WASYNCZUK O, SUDHOFF S D, et al. Analysis of electric machinery and drive systems[M]. New York: Wiley-IEEE Press, 2013: 121-141.
    [15] YANG F, TAYLOR A R, BAI H, et al. Using d-q transformation to vary the switching frequency for interior permanent magnet synchronous motor drive systems[J]. IEEE Transactions on Transportation Electrification, 2015, 1(3): 277-286. doi: 10.1109/TTE.2015.2443788
    [16] LOK-FU P, VENKATA D. Real-time simulation of a wind energy system based on the doubly-fed induction generator[J]. IEEE Transactions on Power Systems, 2009, 24(3): 1301-1309. doi: 10.1109/TPWRS.2009.2021200
    [17] 夏长亮. 无刷直流电动机控制系统[M]. 北京: 科学出版社, 2009: 31-56.

    XIA C L. Control system of brushless DC machine[M]. Beijing: Science Press, 2009: 31-56(in Chinese).
    [18] RAO Y S, MUKUL C. Real-time electrical load emulator using optimal feedback control technique[J]. IEEE Transactions on Industrial Electronics, 2010, 57(4): 1217-1225. doi: 10.1109/TIE.2009.2037657
    [19] 张崇巍, 张兴. PWM整流器及其控制[M]. 北京: 机械工业出版社, 2003: 154-186.

    ZHANG C W, ZHANG X. PWM rectifier and its control[M]. Beijing: China Machine Press, 2003: 154-186(in Chinese).
    [20] 王雷. 能量回馈型交流电子负载变换器研究[D]. 南京: 南京航空航天大学, 2008: 16-22. https://wenku.baidu.com/view/e8b3b3333968011ca3009181.html?fr=xueshu

    WANG L. Study of AC electronic load converter with energy feedback[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 16-22(in Chinese). https://wenku.baidu.com/view/e8b3b3333968011ca3009181.html?fr=xueshu
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  566
  • HTML全文浏览量:  121
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-21
  • 录用日期:  2020-10-09
  • 网络出版日期:  2021-10-20

目录

    /

    返回文章
    返回
    常见问答