-
摘要:
为了更加准确地进行异源遥感图像的变化检测任务,提出了一种基于混合网络的异源遥感图像变化检测算法。利用伪孪生网络提取异源遥感图像块间空间维度的变化特征,利用早期融合网络提取异源遥感图像块间光谱维度的变化特征,将2支网络提取的特征进行融合,并将融合后的变化特征输入到sigmoid层进行二分类检测。同时,在伪孪生网络中加入对比损失函数,通过优化对比损失函数,使得在特征空间中,未变化图像对的空间特征差异更小,变化图像对的空间特征差异更大,以提升网络的区分能力和收敛速度。
Abstract:In order to more quickly and accurately perform the change detection task of heterogeneous remote sensing images, this paper presents a heterogeneous remote sensing image change detection algorithm based on a hybrid network. The algorithm uses a pseudo-siamese network to extract change features between the heterogeneous image blocks in spatial dimension, and uses an early fusion network to extract change features between the heterogeneous image blocks in spectral dimension. The features extracted from the two networks are fused and the fused features are input to the sigmoid layer for binary classification to determine whether the feature has changed. In addition, the contrast loss function is added to the pseudo-siamese network, so that in the features space, the spatial features of the unchanged image pair are closer, and the spatial features of the changed image pair are farther away, which is conducive to improving the network's distinction ability and convergence speed.
-
表 1 Bastrop复杂火灾数据集的变化检测结果
Table 1. Change detection results on Bastrop complex fire dataset
算法 OA/% L5T1 vs.L5T2 L5T1 vs.ALIT2 L5T1 vs.L8T2 MAD+CVA 87.233 79.991 77.075 KCCA+CVA 92.614 90.175 91.671 DCCA+CVA 95.556 94.676 93.943 DCCAE+CVA 96.598 95.713 94.308 EF 97.358 97.115 94.314 PS 98.382 98.136 94.526 HCNN 99.286 98.764 95.581 表 2 在香港图像对上使用不同算法获得的变化检测定量结果
Table 2. Quantitative results of change detection obtained by different algorithms on Hong Kong image pairs
算法 OA/% AA/% Kappa系数 S 96.542 68.511 0.424 PS 97.900 76.090 0.631 EF 97.134 74.943 0.598 HCNN 97.617 81.200 0.656 表 3 在孟买图像对上使用不同算法获得的变化检测定量结果
Table 3. Quantitative results of change detection obtained by different algorithms on Mumbai image pairs
算法 OA/% AA/% Kappa系数 S 95.928 69.293 0.457 PS 96.325 80.217 0.635 EF 95.449 80.599 0.628 HCNN 97.293 82.583 0.673 表 4 L5T1 vs.L8T2实验中EF网络与HCNN网络使用2D卷积和3D卷积对检测精度的影响
Table 4. Effect of EF and HCNN networks with 2D convolution and 3D convolution on detection accuracy in L5T1 vs. L8T2 experiment
算法 OA/% Kappa系数 EF(2D卷积) 94.314 0.711 EF(3D卷积) 94.938 0.723 HCNN(2D卷积) 95.258 0.731 HCNN(3D卷积) 95.581 0.759 表 5 L5T1 vs.ALIT2实验中PS网络与HCNN网络是否添加对比损失函数对检测精度的影响
Table 5. Effect of PS and HCNN networks with and without contrast loss function on detection accuracy in L5T1 vs. ALIT2 experiment
算法 OA/% Kappa系数 PS(未添加对比损失函数) 98.136 0.903 HCNN(未添加对比损失函数) 98.66 0.932 PS(添加对比损失函数) 98.356 0.917 HCNN(添加对比损失函数) 98.764 0.943 -
[1] ALBERGA V. Similarity measures of remotely sensed multi-sensor images for change detection applications[J]. Remote Sensing, 2009, 1(3): 122-143. doi: 10.3390/rs1030122 [2] FERNANDEZ-PRIETO D, MARCONCINI M. A novel partially supervised approach to targeted change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 5016-5038. doi: 10.1109/TGRS.2011.2154336 [3] LAI P L, FYFE C. Kernel and nonlinear canonical correlation analysis[J]. International Journal of Neural Systems, 2000, 10(5): 365-377. doi: 10.1142/S012906570000034X [4] VOLPI M, DE MORSIER F, CAMPS-VALLS G, et al. Multi-sensor change detection based on nonlinear canonical correlations[C]//2013 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2013: 1944-1947. [5] ZHU Z, WOODCOCK C E. Object-based cloud and cloud shadow detection in Landsat imagery[J]. Remote Sensing of Environment, 2012, 118: 83-94. doi: 10.1016/j.rse.2011.10.028 [6] JIAN M, LAM K, DONG J, et al. Visual-patch-attention-aware saliency detection[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2015, 45(8): 1575-1586. http://europepmc.org/abstract/med/25291809 [7] JIAN M, QI Q, DONG J, et al. Integrating QDWD with pattern distinctness and local contrast for underwater saliency detection[J]. Journal of Visual Communication and Image Representation, 2018, 53: 31-41. doi: 10.1016/j.jvcir.2018.03.008 [8] JIAN M, ZHANG W, YU H, et al. Saliency detection based on directional patches extraction and principal local color contrast[J]. Journal of Visual Communication and Image Representation, 2018, 57: 1-11. doi: 10.1016/j.jvcir.2018.10.008 [9] MERCIER G, MOSER G, SERPICO S B. Conditional copulas for change detection in heterogeneous remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1428-1441. doi: 10.1109/TGRS.2008.916476 [10] GAO F, LIU X, DONG J, et al. Change detection in SAR images based on deep Semi-NMF and SVD networks[J]. Remote Sensing, 2017, 9(5): 435. doi: 10.3390/rs9050435 [11] MOU L, BRUZZONE L, ZHU X X. Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 924-935. doi: 10.1109/TGRS.2018.2863224 [12] ZHANG P, GONG M, SU L, et al. Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116: 24-41. doi: 10.1016/j.isprsjprs.2016.02.013 [13] ZHANG Z, VOSSELMAN G, GERKE M, et al. Change detection between multimodal remote sensing data using Siamese CNN[EB/OL]. (2018-07-25)[2020-08-01]. https://arxiv.org/abs/1807.09562. [14] LIU J, GONG M, QIN K, et al. A deep convolutional coupling network for change detection based on heterogeneous optical and radar images[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 29(3): 545-559. http://ieeexplore.ieee.org/document/7795259/citations [15] HUGHES L H, SCHMITT M, MOU L, et al. Identifying corresponding patches in SAR and optical images with a pseudo-Siamese CNN[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 784-788. doi: 10.1109/LGRS.2018.2799232 [16] NIU X, GONG M, ZHAN T, et al. A conditional adversarial network for change detection in heterogeneous images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16(1): 45-49. http://it.ckcest.cn/portal.php?mod=viewaid=3338420 [17] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735 [18] LI Y, ZHANG H, SHEN Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1): 67. doi: 10.3390/rs9010067 [19] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2005, 1: 539-546. [20] DAUDT R C, LE SAUX B, BOULCH A, et al. Urban change detection for multispectral earth observation using convolutional neural networks[C]//2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2018: 2115-2118. [21] VOLPI M, CAMPS-VALLS G, TUIA D. Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 107: 50-63. doi: 10.1016/j.isprsjprs.2015.02.005 [22] ANDREW G, ARORA R, BILMES J, et al. Deep canonical correlation analysis[C]//International Conference on International Conference on Machine Learning, 2013, 28: 1247-1255. [23] WANG W, ARORA R, LIVESCU K, et al. On deep multi-view representation learning[C]//International Conference on Machine Learning, 2015: 1083-1092. [24] ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 4353-4361.