-
摘要:
由于电力系统的安全问题往往会造成严重的经济或社会影响,隐患检测已成为电力系统不可或缺的重要环节。随着人工智能领域的发展,基于深度学习的智能化电力系统隐患检测技术逐渐得到越来越多的关注。但目前的方法大多只是单一地考虑图像的全局特征或局部特征,无法全面彻底表征图像,进而难以捕捉电力领域尤其室外复杂背景下的隐患检测。为此,基于深度学习技术,提出了一种面向电力系统的多粒度隐患检测方法MGNet。通过引入图像的多粒度信息,构建全局和局部网络,进行多粒度级检测;并通过不同粒度级检测结果的协作式融合,增强检测的全面性。在杆塔连接金具隐患和线路通道机械隐患2个数据集上进行了实验比较和分析,对所提模型的检测性能进行评估。通过与现有最优隐患检测基准方法相比,所提方法在2种不同数据集上的平均精度均值分别提升了2.74%和2.77%,验证了模型的有效性。
Abstract:As the security hazard of the electrical power system can lead to serious economic damage and social impacts, the potential hazard detection has become an indispensable part for electrical power system. With the advances of artificial intelligence, intelligent deep learning based hazard detection methods for electrical power system have emerged. Although the existing methods have made promising progress, most of them only consider the global or local features of the image, which cannot thoroughly characterize the imageand accurately conduct the hazard detection in the context of the electrical power system especially for the complex outdoor background. In the light of this, in this paper, we present a multi-granularity hazard detection network MGNet for the electrical power system. To be specific, we explore the multi-granularity representation of images with both the global and local representation learning networks. Based on that, we conduct the hazard detection at different granularity levels and finally collaboratively fuse the detection results to fulfill the precise hazard detection. Extensive experiments on two real-world datasets of hazard(i.e., tower connection fitting hazard dataset and transmission line channel mechanical hazard dataset) demonstrate the superiority of the detection performance of the proposed model. In particular, the mean average precision is improved by 2.74% and 2.77% on two datasets, respectively, compared with the existing optimal hazard detection benchmark method.
-
Key words:
- hazard detection /
- multi-granularity /
- collaborative fusion /
- deep learning /
- electrical power system
-
表 1 符号表示
Table 1. Summary of main notations' representation
符号 含义 C 隐患标签数目 oj 第j个隐患物体 cj oj的隐患类别标签标识 tj oj的位置表示 图像全局特征图 图像在第r个网格中局部特征图表示 隐患物体 的预测类别 隐患物体 的预测位置 表 2 杆塔连接金具隐患数据集规模
Table 2. Statistics of tower connection fitting hazard datasets
隐患类别 隐患物体数目 销钉缺损 6 232 销钉安装位置错误 3 272 表 3 线路通道机械隐患数据集规模
Table 3. Statistics of transmission line channel mechanical hazard datasets
隐患类别 隐患物体数目 卡车 7 073 推土机 7 579 起重机 15 796 挖掘机 18 568 泵车 4 808 水泥混合器 2 449 打桩机 1 336 表 4 不同隐患检测方法在2个数据集上的平均精度均值
Table 4. Mean average precision of different hazard detection methods on two datasets
模型 mAP/% 杆塔连接金具隐患数据集 线路通道机械隐患数据集 SSD 19.99 60.93 Faster R-CNN 38.96 71.65 YOLOv3 40.59 61.32 Cascade R-CNN 41.21 68.50 YOLOv4 44.99 72.34 MGNet 47.73 75.11 表 5 多粒度隐患检测网络消融实验
Table 5. Ablation experiments of multi-granularity hazard detection network
模型 mAP/% 杆塔连接金具隐患数据集 线路通道机械隐患数据集 MGNet 47.73 75.11 MGNet_NoGlobal 46.87 41.24 MGNet_NoLocal 38.96 71.65 -
[1] ZHAI Y J, WANG D, ZHANG M L, et al. Fault detection of insulator based on saliency and adaptive morphology[J]. Multimedia Tools and Applications, 2017, 76(9): 12051-12064. doi: 10.1007/s11042-016-3981-2 [2] PRASAD P S, RAO B P. LBP-HF features and machine learning applied for automated monitoring of insulators for overhead power distribution lines[C]//Proceedings of the International Conference on Wireless Communications, 2016: 808-812. [3] NORDENG I E, HASAN A, OLSEN D, et al. DEBC detection with deep learning[C]//Proceedings of the Scandinavian Conference. Berlin: Springer, 2017: 248-259. [4] 王万国, 田兵, 刘越, 等. 基于RCNN的无人机巡检图像电力小部件识别研究[J]. 地球信息科学, 2017, 19(2): 256-263. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201702014.htmWANG W G, TIAN B, LIU Y, et al. Study on the electrical devices detection in UAV images based on region based convolutional neural networks[J]. Journal of Geo-information Science, 2017, 19(2): 256-263(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201702014.htm [5] 柴玉梅, 员武莲, 王黎明, 等. 基于双注意力机制和迁移学习的跨领域推荐模型[J]. 计算机学报, 2020, 43(9): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202010007.htmCHAI Y M, YUAN W L, WANG L M, et al. A cross-domain recommendation model based on dual attention mechanism and transfer learning[J]. Chinese Journal of Computers, 2020, 43(9): 1-20(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202010007.htm [6] 严星, 尤洪峰. Faster-RCNN电力输送塔检测算法[J]. 计算机仿真, 2020, 37(2): 135-139. doi: 10.3969/j.issn.1006-9348.2020.02.028YAN X, YOU H F. Target detection algorithm for Faster-RCNN power transmission tower[J]. Computer Integrated Manufacturing Systems, 2020, 37(2): 135-139(in Chinese). doi: 10.3969/j.issn.1006-9348.2020.02.028 [7] 陈耀东, 李仁发, 李实英, 等. 面向目标检测与姿态估计的联合文法模型[J]. 计算机学报, 2014, 37(10): 2206-2217. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201410014.htmCHEN Y D, LI R F, LI S Y, et al. A combined grammar for object detection and pose estimation[J]. Chinese Journal of Computers, 2014, 37(10): 2206-2217(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201410014.htm [8] 张冬明, 靳国庆, 代锋, 等. 基于深度融合的显著性目标检测算法[J]. 计算机学报, 2019, 42(9): 2076-2086. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201909012.htmZHANG D M, JIN G Q, DAI F, et al. Salient object detection based on deep fusion of hand-crafted features[J]. Chinese Journal of Computers, 2019, 42(9): 2076-2086(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201909012.htm [9] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the International Conference on Learning Representation, 2015. [10] GIRSHICK R B. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1440-1448. [11] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 770-778. [12] 陆永帅, 李元祥, 刘波, 等. 基于深度残差网络的高光谱遥感数据霾监测[J]. 光学学报, 2017, 37(11): 314-324. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201711037.htmLU Y S, LI Y X, LIU B, et al. Hyperspectral data haze monitoring based on deep residual network[J]. Acta Optica Sinica, 2017, 37(11): 314-324(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201711037.htm [13] 朱超平, 杨艺. 基于YOLO2和ResNet算法的监控视频中的人脸检测与识别[J]. 重庆理工大学学报(自然科学), 2018, 32(8): 170-175. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201808027.htmZHU C P, YANG Y. Face detection and recognition in monitoring video based on YOLO2 and ResNet algorithm[J]. Journal of Chongqing University of Technology (Natural Science), 2018, 32(8): 170-175(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201808027.htm [14] 徐龙壮, 彭力, 朱凤增. 多任务金字塔重叠匹配的行人重识别方法[J/OL]. 计算机工程, 2020(2020-02-11)[2020-08-01]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJC20200209002&v=fpDLQvPDFGfsJ7%25mmd2BlY85YejXOe%25mmd2B%25mmd2FpNa24x8p%25mmd2FiBh3e5i3ALZRcuH3l1F0Q0lM4Rgp.XU L Z, PENG L, ZHU F Z. Person re-identification method based on multi-task pyramid overlapping matching[J/OL]. Computer Engineering, 2020(2020-02-11)[2020-08-01]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJC20200209002&v=fpDLQvPDFGfsJ7%25mmd2BlY85YejXOe%25mmd2B%25mmd2FpNa24x8p%25mmd2FiBh3e5i3ALZRcuH3l1F0Q0lM4Rgp (in Chinese). [15] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171. doi: 10.1007/s11263-013-0620-5 [16] 李文璞, 谢可, 廖逍, 等. 基于Faster RCNN变电设备红外图像缺陷识别方法[J]. 南方电网技术, 2019, 13(12): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW201912012.htmLI W P, XIE K, LIAO X, et al. Intelligent diagnosis method of infrared image for transformer equipment based on improved Faster RCNN[J]. China Southern Power Grid, 2019, 13(12): 79-84(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW201912012.htm [17] 徐向前, 孙涛. Faster RCNN的交通场景下行人检测方法[J]. 软件导刊, 2020, 19(4): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK202004013.htmXU X Q, SUN T. Pedestrian detection method in traffic scene based on Faster RCNN[J]. Software Guide, 2020, 19(4): 67-70(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-RJDK202004013.htm [18] 李林升, 曾平平. 改进深度学习框架Faster-RCNN的苹果目标检测[J]. 机械设计与研究, 2019, 35(5): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYY201905011.htmLI L S, ZENG P P. Apple target detection based on improved Faster-RCNN framework of deep learning[J]. Machine Design and Research, 2019, 35(5): 24-27(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYY201905011.htm [19] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]//European Conference on Computer Vision. Berlin: Springer, 2016: 21-37. [20] REN S Q, HE K M, GIRSHICK R B, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 91-99. doi: 10.1109/TPAMI.2016.2577031 [21] REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-08)[2020-08-01]. https://arxiv.org/abs/1804.02767. [22] CAI Z W, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 6154-6162. [23] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2020-08-01]. https://arxiv.org/abs/2004.10934.