留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层乳胶气球的高空平漂机理及垂直轨迹模拟

何红 朱华健 谌志鹏 肖迪娥 潘显智 李凡珠

何红, 朱华健, 谌志鹏, 等 . 双层乳胶气球的高空平漂机理及垂直轨迹模拟[J]. 北京航空航天大学学报, 2021, 47(12): 2650-2656. doi: 10.13700/j.bh.1001-5965.2020.0505
引用本文: 何红, 朱华健, 谌志鹏, 等 . 双层乳胶气球的高空平漂机理及垂直轨迹模拟[J]. 北京航空航天大学学报, 2021, 47(12): 2650-2656. doi: 10.13700/j.bh.1001-5965.2020.0505
HE Hong, ZHU Huajian, SHEN Zhipeng, et al. High-altitude floating mechanism and vertical trajectory simulation of double-layer latex balloon[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2650-2656. doi: 10.13700/j.bh.1001-5965.2020.0505(in Chinese)
Citation: HE Hong, ZHU Huajian, SHEN Zhipeng, et al. High-altitude floating mechanism and vertical trajectory simulation of double-layer latex balloon[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2650-2656. doi: 10.13700/j.bh.1001-5965.2020.0505(in Chinese)

双层乳胶气球的高空平漂机理及垂直轨迹模拟

doi: 10.13700/j.bh.1001-5965.2020.0505
基金项目: 

国家重点研发计划 2018YFC1506202

详细信息
    通讯作者:

    李凡珠, E-mail: lifz@mail.buct.edu.cn

  • 中图分类号: V273

High-altitude floating mechanism and vertical trajectory simulation of double-layer latex balloon

Funds: 

National Key R & D Program of China 2018YFC1506202

More Information
  • 摘要:

    双层乳胶气球克服了单层乳胶气球的缺点,可以在高空平漂以实现持续气象观测,但是其高空平漂受多因素影响比较复杂,特别是气球充气量主要依赖工程经验,施放成功率不高,亟需提供理论指导。通过试验数据证明了浮重平衡是双层乳胶气球实现高空平漂的必要条件,推导得出内、外球氢气充气量和昼夜温度变化对其运动的影响;建立了双层乳胶气球的几何模型和动力学模型,结合实地施放试验,对其升空和平漂过程轨迹进行模拟,由此探究了内、外球充气量对平漂高度的影响。研究结果表明:内球充气量是决定平漂高度的主要因素,并受昼夜温度变化影响,当内、外球规格分别为750g、500g,负载约1kg时,内球拉力每增大或减小0.04kg,最终平漂高度将对应升高或降低约5km,而外球充气量对其平漂高度无影响。

     

  • 图 1  双层乳胶气球探空系统

    Figure 1.  Double-layer latex balloon sounding system

    图 2  双层乳胶气球上升与平漂过程示意图

    Figure 2.  Schematic diagram of ascent and horizontal floating section of double-layer latex balloon

    图 3  2019年10月29日晚湖南怀化施放试验数据

    Figure 3.  Test data during balloon release in Huaihua, Hunan in evening of October 29, 2019

    图 4  白天测得的球内外气体温度数据

    Figure 4.  Temperature data of gas inside and outside balloon measured in day

    图 5  球皮内外温度数据分段线性拟合

    Figure 5.  Piecewise linear fitting of temperature data inside and outside balloon film

    图 6  双层乳胶气球垂直轨迹的实验数据与模拟数据对比

    Figure 6.  Comparison between test data and simulation data of vertical trajectories for double-layer latex balloon

    图 7  不同内拉力对应的双层乳胶气球垂直轨迹

    Figure 7.  Vertical trajectories of double-layer latex balloon corresponding to different pull forces of inner balloon

    图 8  不同外拉力对应的双层乳胶气球垂直轨迹

    Figure 8.  Vertical trajectories of double-layer latex balloon corresponding to different pull forces of outer balloon

    表  1  地面处测得的球重、负载、拉力等数据

    Table  1.   Balloon weight, load, pull force and other data measured on ground

    参数 外球重/kg 内球重/kg 内拉力/kg 外拉力/kg 负载/kg
    数值 0.556 0.778 0.313 2.587 0.970 5
    下载: 导出CSV
  • [1] FEVIG R A, STRAUB J. Formalizing mission analysis and design techniques for high altitude ballooning[C]//Proceedings of the 3rd Annual High Altitude Conference. Ames: Iowa State University Digital Press, 2012: 44-55.
    [2] 陈旭. 长时高空气球的研制发展[J]. 航天器工程, 2007, 16(4): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC200704020.htm

    CHEN X. Development of long duration high altitude balloon[J]. Spacecraft Engineering, 2007, 16(4): 83-88(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC200704020.htm
    [3] 田莉莉, 方贤德. NASA高空气球的研究及其进展[J]. 航天返回与遥感, 2012, 33(1): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201201017.htm

    TIAN L L, FANG X D. Research and progress of NASA's balloon[J]. Spacecraft Recovery and Remote Sensing, 2012, 33(1): 81-87(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201201017.htm
    [4] CATHEY H M JR. Development of the NASA long duration balloon vehicle[J]. Advances in Space Research, 2000, 26(9): 1345-1348. doi: 10.1016/S0273-1177(00)00058-2
    [5] SMITH I S JR. Overview of the ultra long duration balloon project[J]. Advances in Space Research, 2002, 30(5): 1205-1213. doi: 10.1016/S0273-1177(02)00535-5
    [6] CATHEY H M JR. Development overview of the revised NASA ultra long duration balloon[J]. Advances in Space Research, 2008, 42(10): 1624-1632. doi: 10.1016/j.asr.2007.03.026
    [7] SUSHKO A, TEDJARATI A, CREUS-COSTA J, et al. Low cost, high endurance, altitude-controlled latex balloon for near-space research (ValBal)[C]//2017 IEEE Aerospace Conference. Piscataway: IEEE Press, 2017: 1-9.
    [8] SUSHKO A, TEDJARATI A, CREUS-COSTA J, et al. Advancements in low-cost, long endurance, altitude controlled latex balloons (ValBal)[C]//2018 IEEE Aerospace Conference. Piscataway: IEEE Press, 2018: 1-10.
    [9] 中国化工株洲橡胶研究设计院有限公司. 一种爆破后球皮残余量恒定的气象气球及其应用: 201810360453.3[P]. 2018-11-30.

    Zhuzhou Rubber Research and Design Institute Co., Ltd. A kind of meteorological balloon with constant balloon film after blasting and its application: 201810360453.3[P]. 2018-11-30(in Chinese).
    [10] 朱华健, 李凡珠, 谌志鹏, 等. 乳胶气球浮力变化分析与垂直运动轨迹模拟[J]. 橡胶工业, 2021, 68(1): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XJGY202101004.htm

    ZHU H J, LI F Z, SHEN Z P, et al. Analysis of buoyancy change of latex balloon and simulation of vertical trajectory[J]. China Rubber Industry, 2021, 68(1): 17-24(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XJGY202101004.htm
    [11] XIA X L, LI D F, SUN C, et al. Transient thermal behavior of stratospheric balloons at float conditions[J]. Advances in Space Research, 2010, 46(9): 1184-1190. doi: 10.1016/j.asr.2010.06.016
    [12] 吕明云, 巫资春. 高空气球热力学模型与上升过程仿真分析[J]. 北京航空航天大学学报, 2011, 37(5): 505-509. LÜ M Y, https://bhxb.buaa.edu.cn/CN/Y2011/V37/I5/505

    WU Z C. Thermodynamic model and numerical simulation of high altitude balloon ascending process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(5): 505-509(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2011/V37/I5/505
    [13] FARLEY R. BalloonAscent: 3-D simulation tool for the ascent and float of high-altitude balloons[C]//AIAA 5th ATIO and 16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences. Reston: AIAA, 2005.
    [14] THAHEER M, SHAQEER A, AMILIA N, et al. Mission design and analysis of USM high-altitude balloon[J]. Journal of Mechanical Engineering, 2017, 14(2): 62-92. http://jmeche.com/wp-content/uploads/bsk-pdf-manager/5_R_14_2_P16-15_191.pdf
    [15] SALEH S, HE W L. New design simulation for a high-altitude dual-balloon system to extend lifetime and improve floating performance[J]. Chinese Journal of Aeronautics, 2018, 31(5): 1109-1118. http://d.old.wanfangdata.com.cn/Periodical/hkxb-e201805021
    [16] PALUMBO R, RUSSO M, FILIPPONE E, et al. ACHAB: Analysis code for high-altitude balloons[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2007: 6642.
    [17] DOSSELAER I V. Buoyant aerobot design and simulation study: BADS[D]. Delft: Delft University of Technology, 2014: 49-50.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  25
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-07
  • 录用日期:  2020-12-11
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答