留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维素航油缩合-加氢工艺能耗分析

黄星华 董升飞 杨晓奕

黄星华, 董升飞, 杨晓奕等 . 纤维素航油缩合-加氢工艺能耗分析[J]. 北京航空航天大学学报, 2022, 48(1): 121-131. doi: 10.13700/j.bh.1001-5965.2020.0506
引用本文: 黄星华, 董升飞, 杨晓奕等 . 纤维素航油缩合-加氢工艺能耗分析[J]. 北京航空航天大学学报, 2022, 48(1): 121-131. doi: 10.13700/j.bh.1001-5965.2020.0506
HUANG Xinghua, DONG Shengfei, YANG Xiaoyiet al. Energy consumption of condensation-hydrogenation process to prepare alkanes from lignocellulose biomass[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 121-131. doi: 10.13700/j.bh.1001-5965.2020.0506(in Chinese)
Citation: HUANG Xinghua, DONG Shengfei, YANG Xiaoyiet al. Energy consumption of condensation-hydrogenation process to prepare alkanes from lignocellulose biomass[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 121-131. doi: 10.13700/j.bh.1001-5965.2020.0506(in Chinese)

纤维素航油缩合-加氢工艺能耗分析

doi: 10.13700/j.bh.1001-5965.2020.0506
基金项目: 

国家重点研发计划 2018YFB1501505

详细信息
    通讯作者:

    杨晓奕, E-mail: yangxiaoyi@buaa.edu.cn

  • 中图分类号: V312+.3

Energy consumption of condensation-hydrogenation process to prepare alkanes from lignocellulose biomass

Funds: 

National Key R & D Program of China 2018YFB1501505

More Information
  • 摘要:

    随着纤维素原料制备糠醛、5-羟甲基糠醛、乙酰丙酸平台化合物技术的日益成熟,平台化合物再利用技术成为国际热点。通过研究平台化合物自缩合与交叉缩合工艺特点,以及后续加氢制备合成航油烷烃的可行路径,设计了利用2条纤维素生物质平台化合物全组分制备航油的工艺,通过能耗分析与评价,确定了每条工艺路线中的主要能耗单元及主要输入的耗能物质。结果表明:糠醛-乙酰丙酸交叉缩合加氢工艺相比糠醛自缩合加氢工艺、5-羟甲基糠醛自缩合加氢工艺在热耗、氢耗等方面有明显优势。为实现秸秆的全组分利用,提出糠醛-乙酰丙酸交叉缩合加氢联合5-羟甲基糠醛自缩合加氢工艺,根据目前的工艺技术,航油收率可达19.6%。

     

  • 图 1  ASPEN PLUS模拟的纤维素航油缩合-加氢工艺

    Figure 1.  Condensation-hydrogenation process simulated by ASPEN PLUS to prepare alkanes from lignocellulose biomass

    图 2  乙酰丙酸二聚

    Figure 2.  Dimerization of LA

    图 3  三种催化糠醛二聚制备C10烷烃的路径

    Figure 3.  Three pathways of catalyzed dimerization of FF for preparation of C10 alkanes

    图 4  糠醛借助甲基呋喃作为桥梁三聚制备C15烷烃

    Figure 4.  Methylfuran assisted trimerization of FF for preparation of C15 alkanes

    图 5  四种催化5-羟甲基糠醛二聚制备C12烷烃的路径

    Figure 5.  Four pathways of catalyzed dimerization of HMF for preparation of C12 alkanes

    图 6  糠醛与乙酰丙酸缩合

    Figure 6.  Condensation between FF and LA

    图 7  5-羟甲基糠醛与乙酰丙酸催化缩合

    Figure 7.  Catalyzed condensation between HMF and LA

    图 8  糠醛与5-羟甲基糠醛分别与呋喃进行缩合

    Figure 8.  Condensation between FF/HMF and furan

    图 9  糠醛及5-羟甲基糠醛的醇类衍生物聚合生成烷烃

    Figure 9.  Alcohols derived from FF/HMF oligomerize to prepare alkanes

    图 10  糠醛、5-羟甲基糠醛与环酮聚合生成C15~C18环烷烃

    Figure 10.  Condensation of FF/HMF and cyclic ketones to produce C15~C18 cycloalkanes

    图 11  LA-FF缩合和5-羟甲基糖醛自缩合结合的纤维素航油制备工艺

    Figure 11.  Preparation process of alkanes from lignocellulose biomass by LA-FF condensation and HMF self-condensation

    图 12  糖醛自缩合和5-羟甲基糖醛自缩合结合的纤维素航油制备工艺

    Figure 12.  Preparation process of alkanes from lignocellulose biomass by self-condensation of FF and HMF

    表  1  三种纤维素类生物质前驱体缩合-加氢制备航油烷烃的方法

    Table  1.   Three ways of alkanes production by condensation and hydrogenation of precursors derived from lignocellulose-derived chemicals

    平台化合物 类别 缩合过程 加氢过程 综合收率/% 参考文献
    缩合收率/% 催化剂 温度/℃ 产物烷烃碳数 理论氢耗/g 加氢收率/% 催化剂 温度/℃
    FF Zn催化FF二聚 98.51 还原剂Zn 50 10 0.103 61.26 Pt/C 300 60.35 [11]
    HMF TPT催化HMF二聚 95 TPT 60 12 0.103 49.92 Pd/C 250 47.42 [4]
    FF、LA LA-FF交叉缩合 79.21 NaOH 50 15、10 0.111 52.23 Ru/C
    Ru/Al2O3
    300 41.37 [22-23]
    注:缩合收率=缩合产物质量/平台化合物的质量×100%;加氢收率=烷烃质量/缩合产物质量×100%;理论氢耗=每克缩合产物加氢过程理论耗氢质量;综合收率=缩合收率×加氢收率×100%。
    下载: 导出CSV

    表  2  基于ASPEN PLUS模拟的各缩合-加氢路径的能耗情况

    Table  2.   Energy consumption of different pathways in condensation and hydrogenation by ASPEN PLUS simulation

    路径 缩合单元
    反应物组成/% 产物组成/% 反应条件 化学反应热/(kJ·mol-1) 热负荷/(J·g-1)
    LA-FF
    缩合加氢
    FF 1.85 C10中间体 0.17 50℃ 1atm -106.35(参考组分:LA) 9 020.25
    LA 1.12 C15中间体 2.17
    NaOH 1.13 其他 97.66
    H2O 95.9
    FF自缩
    合加氢
    FF 5.78 C10中间体 5.69 50℃ 1atm 413.35(参考组分:FF) 9 886.19
    Zn 3.94 其他 94.31
    NaOH 9.03
    H2O 81.25
    HMF自缩
    合加氢
    HMF 100 C12中间体 95 60℃ 1atm 81.44(参考组分:HMF) 1 451.1
    TPT 其他 5
    KOtBu
    路径 加氢单元
    反应物组成/% 产物组成/% 反应条件 化学反应热/(kJ·mol-1) 热负荷/(J·g-1)
    LA-FF
    缩合加氢
    含氧中间体 32.23 C10烷烃 1.17 300℃ 4 MPa -1 186.01(参考组分:含氧中间体) 2 836.74
    甲醇 64.24 C15烷烃 15.67
    催化剂 其他 83.16
    H2 3.53
    FF自缩合加氢 含氧中间体 1.9 C10烷烃 1.16 300℃ 10 MPa -1 317.28
    (参考组分:含氧中间体)
    112 654.2
    97.9 其他 98.84
    Pt/C
    固体酸
    H2 0.2
    HMF自缩合加氢 含氧中间体 0.59 C12烷烃 0.29 250℃ 4.2 MPa -1 105.91(参考组分:含氧中间体) 61 555.36
    醋酸 99.35 其他 99.71
    Pd/C
    La(OTf)3
    H2 0.06
    路径 泵单元 余热收集单元
    电功/(J·g-1) 缩合副产物余热/(J·g-1) 加氢产物余热/(J·g-1)
    LA-FF缩合加氢 62.99 -7 780.66 -6 962.93
    FF自缩合加氢 2 825.2 -2 287.26 -94 188.84
    HMF自缩合加氢 4 289.59 -7.56 -58 110.59
    注:表中各单元能耗基准为各路径生成每克航油产物所消耗的能量,正值表示吸热,负值表示放热;1 atm=1.013 25×105 Pa。
    下载: 导出CSV

    表  3  基于航油产物的各缩合-加氢路径能耗汇总

    Table  3.   Energy consumption of different pathways in condensation and hydrogenation based on alkanes products

    基准 路径 反应热耗/kJ 电耗/J (反应热耗+电耗)/J 余热收集/J 加氢氢耗/g
    基于每克航油产物 LA-FF
    缩合加氢
    考虑C10与C15 11 856.99 62.99 11 919.98 -14 743.59 0.142 3
    只考虑C10 171 165.14 909.31 172 074.45 -212 835.52 2.054 3
    只考虑C15 12 739.48 67.68 12 807.16 -15 840.93 0.152 9
    FF自缩合加氢 122 540.42 2 825.20 125 365.62 -96 476.10 0.141 7
    HMF自缩合加氢 63 006.46 4 289.59 67 296.05 -58 118.15 0.153 8
    基于每焦耳航油产物 LA-FF
    缩合加氢
    考虑C10与C15 0.27 0.001 4 0.27 -0.34
    只考虑C10 3.87 0.020 6 3.89 -4.81
    只考虑C15 0.29 0.001 5 0.29 -0.36
    FF自缩合加氢 2.77 0.063 9 2.83 -2.18
    HMF自缩合加氢 1.43 0.097 2 1.53 -1.32 /
    注:LA-FF缩合加氢路径航油产物同时包含C10和C15烷烃,表中给出了只考虑C10或C15航油的情况;LHVC10=44.24 kJ/g, LHVC12=44.11 kJ/g, LHVC15=43.98 kJ/g。
    下载: 导出CSV

    表  4  各种工艺缩合-加氢过程的能耗指标

    Table  4.   Energy consumption indexes of condensation and hydrogenation of various processes

    工艺 航油产率 热耗+电耗 氢耗
    基于每克秸秆/g 基于每克秸秆/J 基于每克秸秆/kJ 基于每克航油/kJ 基于每焦耳航油/J 基于每克秸秆/g 基于每克航油/g 基于每焦耳航油/g
    LA-FF缩合 0.094 2 4 144.79 1.12 11.92 0.27 0.013 4 0.142 3 3.234 3
    FF自缩合 0.085 6 3 785.62 10.73 125.37 2.83 0.012 1 0.141 7 3.202 7
    HMF自缩合 0.145 9 6 436.19 9.82 67.30 1.53 0.022 4 0.153 8 3.487 8
    LA-FF缩合与HMF自缩合结合 0.196 0 8 634.23 7.97 40.68 0.92 0.029 1 0.148 3 3.366 1
    FF自缩合与HMF自缩合结合 0.231 5 10 221.82 20.55 88.76 2.01 0.034 6 0.149 4 3.382 3
    下载: 导出CSV
  • [1] HUBER G W, CHHEDA J N, BARRETT C J, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 2005, 308(5727): 1446-1450. doi: 10.1126/science.1111166
    [2] CHHEDA J N, DUMESIC J A. An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates[J]. Catalysis Today, 2007, 123(1-4): 59-70. doi: 10.1016/j.cattod.2006.12.006
    [3] MARISCAL R, MAIRELES-TORRES P, OJEDA M, et al. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy & Environmental Science, 2016, 9(4): 1144-1189. https://pubs.rsc.org/en/content/articlelanding/2016/ee/c5ee02666k
    [4] ZANG H J, WANG K, ZHANG M C, et al. Catalytic coupling of biomass-derived aldehydes into intermediates for biofuels and materials[J]. Catalysis Science & Technology, 2018, 8(7): 1777-1798. https://pubs.rsc.org/en/content/articlelanding/2018/cy/c7cy02221b
    [5] LI Z, ZHANG J J, NIELSEN M M, et al. Efficient C—C bond formation between two levulinic acid molecules to produce C10 compounds with the cooperation effect of lewis and brønsted acids[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 5708-5711.
    [6] LI H, RIISAGER A, SARAVANAMURUGAN S, et al. Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals[J]. ACS Catalysis, 2018, 8(1): 148-187. doi: 10.1021/acscatal.7b02577
    [7] SUBRAHMANYAM A V, THAYUMANAVAN S, HUBER G W. C—C bond formation reactions for biomass-derived molecules[J]. ChemSusChem, 2010, 3(10): 1158-1161. doi: 10.1002/cssc.201000136
    [8] FABA L, DÍAZ E, ORDÓÑEZ S. Base-catalyzed condensation of levulinic acid: A new biorefinery upgrading approach[J]. ChemCatChem, 2016, 8(8): 1490-1494. doi: 10.1002/cctc.201600064
    [9] AMARASEKARA A S, WIREDU B, GRADY T L, et al. Solid acid catalyzed aldol dimerization of levulinic acid for the preparation of C10 renewable fuel and chemical feedstocks[J]. Catalysis Communications, 2019, 124: 6-11. doi: 10.1016/j.catcom.2019.02.022
    [10] NILGES P, DOS SANTOS T R, HARNISCH F, et al. Electrochemistry for biofuel generation: Electrochemical conversion of levulinic acid to octane[J]. Energy & Environmental Science, 2012, 5(1): 5231-5235. https://pubs.rsc.org/en/content/articlelanding/2012/ee/c1ee02685b
    [11] HUANG Y B, YANG Z, DAI J J, et al. Production of high quality fuels from lignocellulose-derived chemicals: A convenient C—C bond formation of furfural, 5-methylfurfural and aromatic aldehyde[J]. RSC Advances, 2012, 2(30): 11211-11214. doi: 10.1039/c2ra22008c
    [12] HRONEC M, FULAJTAROVÁ K. Selective transformation of furfural to cyclopentanone[J]. Catalysis Communications, 2012, 24: 100-104. doi: 10.1016/j.catcom.2012.03.020
    [13] YANG Y L, DU Z T, HUANG Y Z, et al. Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts[J]. Green Chemistry, 2013, 15(7): 1932. doi: 10.1039/c3gc37133f
    [14] YANG J F, LI N, LI G Y, et al. Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose[J]. Chemical Communications, 2014, 50(20): 2572-2574. doi: 10.1039/c3cc46588h
    [15] WEGENHART B L, YANG L N, KWAN S C, et al. From furfural to fuel: Synthesis of furoins by organocatalysis and their hydrodeoxygenation by cascade catalysis[J]. ChemSusChem, 2014, 7(9): 2742-2747. doi: 10.1002/cssc.201402056
    [16] WANG T J, LI K, LIU Q Y, et al. Aviation fuel synthesis by catalytic conversion of biomass hydrolysate in aqueous phase[J]. Applied Energy, 2014, 136: 775-780. doi: 10.1016/j.apenergy.2014.06.035
    [17] CORMA A, DELATORRE O, RENZ M, et al. Production of high-quality diesel from biomass waste products[J]. Angewandte Chemie International Edition, 2011, 50(10): 2375-2378. doi: 10.1002/anie.201007508
    [18] YANG W, GROCHOWSKI M R, SEN A. Selective reduction of biomass by hydriodic acid and its in situ regeneration from iodine by metal/hydrogen[J]. ChemSusChem, 2012, 5(7): 1218-1222. doi: 10.1002/cssc.201100669
    [19] TAN J, WANG C G, ZHANG Q, et al. One-pot condensation of furfural and levulinates: A novel method for cassava use in synthesis of biofuel precursors[J]. Energy & Fuels, 2018, 32(6): 6807-6812.
    [20] LIANG G F, WANG A Q, ZHAO X C, et al. Selective aldol condensation of biomass-derived levulinic acid and furfural in aqueous-phase over MgO and ZnO[J]. Green Chemistry, 2016, 18(11): 3430-3438. doi: 10.1039/C6GC00118A
    [21] AMARASEKARA A S, SINGH T B, LARKIN E, et al. NaOH catalyzed condensation reactions between levulinic acid and biomass derived furan-aldehydes in water[J]. Industrial Crops and Products, 2015, 65: 546-549. doi: 10.1016/j.indcrop.2014.10.005
    [22] 张琦, 李宇萍, 陈伦刚, 等. 百吨/年规模生物质水相合成航油类烃过程的物质与能量转化[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201701003.htm

    ZHANG Q, LI Y P, CHEN L G, et al. Material and energy conversion of integrated 100 t/a-scale bio-jet fuel-range hydrocarbon production system via aqueous conversion of biomass[J]. Journal of Tianjin University (Science and Technology), 2017, 50(1): 13-18(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201701003.htm
    [23] LI Y P, CHEN L G, ZHANG X H, et al. Process and techno-economic analysis of bio-jet fuel-range hydrocarbon production from lignocellulosic biomass via aqueous phase deconstruction and catalytic conversion[J]. Energy Procedia, 2017, 105: 675-680. doi: 10.1016/j.egypro.2017.03.374
    [24] ZHAO L W, ELECHI N, QIAN R, et al. Origin of the regioselectivity in the aldol condensation between hydroxymethylfurfural and levulinic acid: A DFT investigation[J]. The Journal of Physical Chemistry A, 2017, 121(9): 1985-1992. doi: 10.1021/acs.jpca.6b11100
    [25] STEVENS J G, BOURNE R A, TWIGG M V, et al. Real-time product switching using a twin catalyst system for the hydrogenation of furfural in supercritical CO2[J]. Angewandte Chemie, 2010, 49(47): 8856-8859. doi: 10.1002/anie.201005092
    [26] VAN BUIJTENEN J, LANGE J P, PRICE R J. Process for preparing a hydrocarbon or mixture of hydrocarbons: US20110173877[P]. 2011-07-21.
    [27] KUMALAPUTRI A J, BOTTARI G, ERNE P M, et al. Tunable and selective conversion of 5-HMF to 2, 5-furandimethanol and 2, 5-dimethylfuran over copper-doped porous metal oxides[J]. ChemSusChem, 2014, 7(8): 2266-2275.
    [28] LIU H Z, JIANG T, HAN B X, et al. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst[J]. Science, 2009, 326(5957): 1250-1252. doi: 10.1126/science.1179713
    [29] XU G Y, GUO J H, ZHANG Y, et al. Selective hydrogenation of phenol to cyclohexanone over Pd-HAP catalyst in aqueous media[J]. ChemCatChem, 2015, 7(16): 2485-2492. doi: 10.1002/cctc.201500442
    [30] LIU Q Y, ZHANG C H, SHI N, et al. Production of renewable long-chained cycloalkanes from biomass-derived furfurals and cyclic ketones[J]. RSC Advances, 2018, 8(25): 13686-13696. https://pubs.rsc.org/en/content/articlepdf/2018/ra/c8ra01723a
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  219
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-08
  • 录用日期:  2020-10-10
  • 网络出版日期:  2022-01-20

目录

    /

    返回文章
    返回
    常见问答