留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于条件生成对抗网络的HDR图像生成方法

贝悦 王琦 程志鹏 潘兴浩 杨默涵 丁丹丹

贝悦, 王琦, 程志鹏, 等 . 基于条件生成对抗网络的HDR图像生成方法[J]. 北京航空航天大学学报, 2022, 48(1): 45-52. doi: 10.13700/j.bh.1001-5965.2020.0518
引用本文: 贝悦, 王琦, 程志鹏, 等 . 基于条件生成对抗网络的HDR图像生成方法[J]. 北京航空航天大学学报, 2022, 48(1): 45-52. doi: 10.13700/j.bh.1001-5965.2020.0518
BEI Yue, WANG Qi, CHENG Zhipeng, et al. HDR image generation method based on conditional generative adversarial network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 45-52. doi: 10.13700/j.bh.1001-5965.2020.0518(in Chinese)
Citation: BEI Yue, WANG Qi, CHENG Zhipeng, et al. HDR image generation method based on conditional generative adversarial network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 45-52. doi: 10.13700/j.bh.1001-5965.2020.0518(in Chinese)

基于条件生成对抗网络的HDR图像生成方法

doi: 10.13700/j.bh.1001-5965.2020.0518
基金项目: 

浙江省自然科学基金 LY20F010013

详细信息
    通讯作者:

    丁丹丹, E-mail: DandanDing@hznu.edu.cn

  • 中图分类号: TP391

HDR image generation method based on conditional generative adversarial network

Funds: 

Zhejiang Provincial Natural Science Foundation of China LY20F010013

More Information
  • 摘要:

    高动态范围(HDR)图像相比低动态范围(LDR)图像有更宽的色域和更高的亮度范围,更符合人眼视觉效果,但由于目前的图像采集设备大都是LDR设备,导致HDR图像资源匮乏,解决该问题的一种有效途径是通过逆色调映射将LDR图像映射为HDR图像。提出了一种基于条件生成对抗网络(CGAN)的逆色调映射算法,以重建HDR图像。为此,设计了基于多分支的生成对抗网络与基于鉴别块的鉴别网络,并利用CGAN的数据生成能力和特征提取能力,将单张LDR图像从BT.709色域映射到对应的BT.2020色域。实验结果表明:与现有方法相比,所提出的网络能够获得更高的客观与主观质量,特别是针对低色域中的模糊区域,所提方法能够重建出更清晰的纹理与细节。

     

  • 图 1  GAN网络基本结构

    Figure 1.  Basic structure of GAN network

    图 2  所提出的生成网络结构

    Figure 2.  Structure of the proposed generative network

    图 3  本文鉴别网络及其内部鉴别块的结构

    Figure 3.  Structure of the proposed authentication network and its internal authentication block

    图 4  实验所使用的20张LDR测试图片

    Figure 4.  LDR test pictures used in this experiment

    图 5  不同方法得到的HDR图像的主观效果对比

    Figure 5.  Comparison of subjective effects of HDR images obtained by different methods

    图 6  低色域模糊场景下的HDR图像重建

    Figure 6.  HDR image reconstruction in low-color-gamut blurred scene

    图 7  一般场景下的HDR图像重建

    Figure 7.  HDR image reconstruction in general scenes

    图 8  消融实验:保留网络中不同分支所得到的主观图像质量

    Figure 8.  Subjective image quality by retaining different branches of network in ablation experiment

    图 9  不同分支输出的特征图

    Figure 9.  Feature maps output from different branches

    表  1  不同方法的客观性能比较

    Table  1.   Comparison of objective performance among different methods

    方法 PSNR MPSNR SSIM MS-SSIM HDR-VDP-2
    DrTMO[2] 22.31 22.44 0.58 0.59 63.79
    ExpandNet[5] 23.61 23.79 0.70 0.71 78.02
    HDRCNN[3] 25.70 25.95 0.60 0.63 70.93
    本文方法 24.99 25.26 0.71 0.77 78.67
    下载: 导出CSV

    表  2  消融实验:网络中不同分支的客观性能比较

    Table  2.   Comparison of objective performance of different branches of network in ablation experiment

    方法 PSNR MPSNR SSIM MS-SSIM HDR-VDP-2
    本文方法 24.99 25.26 0.71 0.77 78.67
    去掉中频分支 22.06 22.46 0.61 0.65 77.73
    仅中频分支 22.36 30.46 0.42 0.45 77.54
    仅高频分支 22.84 42.44 0.45 0.47 78.72
    下载: 导出CSV
  • [1] 马正先. HDR技术及其在4K超高清电视上的应用[J]. 电视技术, 2019, 43(1): 33-39. doi: 10.3969/j.issn.2096-0751.2019.01.010

    MA Z X. HDR technology and application on 4K ultra-high-definition TV[J]. Television Technology, 2019, 43(1): 33-39(in Chinese). doi: 10.3969/j.issn.2096-0751.2019.01.010
    [2] ENDO Y, KANAMORI Y, MITANI J. Deep reverse tone mapping[J]. ACM Transactions on Graphics, 2017, 36(6): 177: 1-177: 10.
    [3] EILERTSEN G, KRONANDER J, DENES G, et al. HDR image reconstruction from a single exposure using deep CNNs[J]. ACM Transactions on Graphics, 2017, 36(6): 1-15. http://www.repository.cam.ac.uk/bitstream/1810/277485/3/paper-opt.pdf
    [4] XU Y C, SONG L, XIE R, et al. Deep video inverse tone mapping[C]//2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM). Piscataway: IEEE Press, 2019: 142-147.
    [5] MARNERIDES D, BASHFORD-ROGERS T, HATCHETT J, et al. ExpandNet: A deep convolutional neural network for high dynamic range expansion from low dynamic range content[J]. Computer Graphics, 2018, 37(2): 37-49.
    [6] KINOSHITA Y, KIYA H. iTM-Net: Deep inverse tone mapping using novel loss function considering tone mapping operator[J]. IEEE Access, 2019, 7: 73555-73563. doi: 10.1109/ACCESS.2019.2919296
    [7] LEE S, AN G H, KANG S J. Deep chain HDRI: Reconstructing a high dynamic range image from a single low dynamic range image[J]. IEEE Access, 2018, 6: 49913-49924. doi: 10.1109/ACCESS.2018.2868246
    [8] XU Y C, NING S Y, XIE R, et al. GAN based multi-exposure inverse tone mapping[C]//2019 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2019: 1-5.
    [9] NING S Y, XU H T, SONG L, et al. Learning an inverse tone mapping network with a generative adversarial regularizer[C]//2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE Press, 2018: 1383-1387.
    [10] LEE S, AN G H, KANG S J. Deep recursive HDRI: Inverse tone mapping using generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin: Springer, 2018: 596-611.
    [11] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image Computing and Computer-Assisted Intervention. Berlin: Springer, 2015: 234-241.
    [12] TAKEUCHI M, SAKAMOTO Y, YOKOYAMA R, et al. A gamut-extension method considering color information restoration using convolutional neural networks[C]//2019 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2019: 774-778.
    [13] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 4681-4690.
    [14] WANG X T, KE Y, WU S X, et al. EsrGAN: Enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin: Springer, 2018: 63-79.
    [15] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 1125-1134.
    [16] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2223-2232.
    [17] SIAROHIN A, SANGINETO E, LATHUILIōRE S, et al. Deformable GANs for pose-based human image generation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3408-3416.
    [18] CHAN C, GINOSAR S, ZHOU T H, et al. Everybody dance now[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 5933-5942.
    [19] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680.
    [20] RATLIFF L J, BURDEN S A, SASTRY S S. Characterization and computation of local Nash equilibria in continuous games[C]//2013 51st Annual Allerton Conference on Communication, Control, and Computing. Piscataway: IEEE Press, 2013: 917-924.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  38
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 录用日期:  2021-04-23
  • 网络出版日期:  2022-01-20

目录

    /

    返回文章
    返回
    常见问答