留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环氧树脂基复合材料加筋板结构吸湿行为研究

喻健 何宇廷 冯宇 马斌麟 张腾 杨飞

李晨光, 杨德伟, 罗光明, 等 . 多模光纤强度调制型扰动传感器传感原理[J]. 北京航空航天大学学报, 2009, 35(5): 618-622.
引用本文: 喻健, 何宇廷, 冯宇, 等 . 环氧树脂基复合材料加筋板结构吸湿行为研究[J]. 北京航空航天大学学报, 2021, 47(9): 1908-1917. doi: 10.13700/j.bh.1001-5965.2020.0532
Li Chenguang, Yang Dewei, Luo Guangming, et al. Sensing theory of fiber optic intrusion sensor based on multimode fiber intensity modulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(5): 618-622. (in Chinese)
Citation: YU Jian, HE Yuting, FENG Yu, et al. Moisture absorption behavior of epoxy resin matrix composite stiffened panel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1908-1917. doi: 10.13700/j.bh.1001-5965.2020.0532(in Chinese)

环氧树脂基复合材料加筋板结构吸湿行为研究

doi: 10.13700/j.bh.1001-5965.2020.0532
基金项目: 

国家自然科学基金 51805538

陕西省高校科协青年人才托举计划 20190410

陕西省自然科学基础研究计划 2020JQ-476

详细信息
    通讯作者:

    冯宇, E-mail: fynuaa@126.com

  • 中图分类号: V258+.3;TB332

Moisture absorption behavior of epoxy resin matrix composite stiffened panel

Funds: 

National Natural Science Foundation of China 51805538

Yong Talents Fund of University Association for Science and Technology in Shaanxi, China 20190410

Natural Science Basic Research Program of Shaanxi 2020JQ-476

More Information
  • 摘要:

    环氧树脂基复合材料的性能对湿热环境敏感,掌握该材料所组成结构的吸湿行为对其实际应用具有重要意义。通过以碳纤维环氧树脂基复合材料层合板的non-Fickian吸湿模型为基础,建立环氧树脂基复合材料加筋板结构的non-Fickian吸湿模型,在70℃/85% RH湿热条件下开展加筋板结构的吸湿实验,对所建立模型进行验证,并与已有的加筋板吸湿模型进行对比,通过所建立模型给出了加筋板沿厚度方向的吸湿量分布规律。结果表明:所建立加筋板non-Fickian吸湿模型的计算结果与实验结果吻合良好,在整个吸湿阶段相对误差小于5%,模型的预测精度高于传统Fick模型。所建立的加筋板non-Fickian吸湿模型可用于环氧树脂基复合材料加筋板层合结构吸湿量的准确预测。

     

  • 图 1  典型复合材料加筋板结构

    Figure 1.  Typical composite stiffened panel structure

    图 2  加筋板结构按厚度划分区域示意图

    Figure 2.  Schematic diagram of stiffened panel divided into areas by thickness

    图 3  实验件和加强筋条示意图

    Figure 3.  Schematic diagram of specimen and stiffener

    图 4  加筋板实验件吸湿实验数据

    Figure 4.  Experimental results for moisture absorption of stiffened panel specimens

    图 5  2 mm层合板吸湿实验结果和模型预测结果

    Figure 5.  Moisture absorption experimental result and model predictive result of laminate with 2 mm thickness

    图 6  各模型的预测结果及绝对误差对比

    Figure 6.  Comparison of predictive results and errors among different models

    图 7  各模型的预测结果及绝对误差对比(文献[18]实验数据)

    Figure 7.  Comparison of predictive results and errors among different models (experimental data in Ref.[18])

    图 8  不同时刻下实验件各厚度区域沿厚度方向的吸湿量

    Figure 8.  Absorbed moisture content of specimen along thickness direction in area with different thickness at different time

    图 9  有限元模型

    Figure 9.  Finite element model

    图 10  不同时刻下复合材料加筋板吸湿量云图

    Figure 10.  Contours of absorbed moisture content of composite stiffened panel at different time

    表  1  各区域铺层定义

    Table  1.   Lay-up definition at each zone

    部位 铺层顺序
    蒙皮壁板
    加强筋条
    [45*/45/03/-45/90/0/90]s
    [0/45/-45/90/45/02/-45]s
    下载: 导出CSV

    表  2  mm层合板non-Fickian吸湿模型参数

    Table  2.   Parameters of non-Fickian moisture absorption model of laminate with 2 mm thickness

    参数 Mm/% ϕ hF/mm Dz/(mm2·d-1) α t0/d
    数值 0.79 0.8 1 0.003 1 0.4 15
    下载: 导出CSV

    表  3  加筋板non-Fickian吸湿模型参数

    Table  3.   Parameters of non-Fickian moisture absorption model of stiffened panel

    参数 区域1 区域2 区域3
    Mmi/% 0.702 0.702 0.702
    ϕi 0.8 0.696 0.467
    hi/mm 2 2.46 4.46
    Dz/(mm2·d-1) 0.004 0.004 0.004
    αi 0.4 0.251 5 0.078 4
    ti/d 15 20 71
    下载: 导出CSV

    表  4  模型1和模型2参数

    Table  4.   Parameters of model 1 and model 2

    模型1参数 数值 模型2参数 数值
    Mn1/% 0.56 MT/% 0.702
    Mn2/% 0.142 Dz2/(mm2·d-1) 0.008 6
    DzⅠ-1/(mm2·d-1) 0.009 7 ϕT 0.6
    DzⅠ-2/(mm2·d-1) 0.014 4 αT 0.001 24
    b/mm 2 βT 0.233
    tF/d 58 tT/d 20
    注:b为板厚度;αT为吸湿系数;βT为吸湿系数;tT为进入non-Fickian时间。
    下载: 导出CSV

    表  5  文献[18]数据对应的non-Fickian吸湿模型参数

    Table  5.   Non-Fickian moisture absorption model parameters corresponding to experimental results in Ref.[18]

    参数 区域1 区域2
    Mmi/% 0.581 3 0.581 3
    ϕi 0.8 0.6
    hi/mm 2.73 5.46
    Dz/(mm2·d-1) 0.006 8 0.006 8
    αi 0.205 0.091 2
    ti/d 20 32
    下载: 导出CSV

    表  6  文献[18]数据对应的模型1和模型2参数

    Table  6.   Parameters of model 1 and model 2 corresponding to experimental results in Ref.[18]

    模型1参数 数值 模型2参数 数值
    Mn1/% 0.37 MT/% 0.581 3
    Mn2/% 0.211 3 Dz2/(mm2·d-1) 9×10-4
    DzⅠ-1/(mm2·d-1) 0.025 ϕT 0.796
    DzⅠ-2/(mm2·d-1) 0.018 9 αT 5.16×10-5
    b/mm 2.73 βT 0.233
    tF/d 20 tT/d 20
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12.

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12(in Chinese).
    [2] 高禹, 李洋洋, 王柏臣, 等. 先进树脂基复合材料在航空发动机上的应用及研究进展[J]. 航空制造技术, 2016, 59(21): 16-21.

    GAO Y, LI Y Y, WANG B C, et al. Application of advanced resin matrix composites in aeroengine and its research progress[J]. Aeronautical Manufacturing Technology, 2016, 59(21): 16-21(in Chinese).
    [3] 徐伟伟, 文友谊, 顾轶卓, 等. 航空用国产碳纤维/双马树脂复合材料湿热特性[J]. 北京航空航天大学学报, 2020, 46(1): 86-94. doi: 10.13700/j.bh.1001-5965.2019.0155

    XU W W, WEN Y Y, GU Y Z, et al. Hygrothermal property of domestic carbon fiber/bismaleimide resin composites for aeronautic application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 86-94(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0155
    [4] 吕小军, 张琦, 马兆庆, 等. 湿热老化对碳纤维/环氧树脂基复合材料力学性能影响研究[J]. 材料工程, 2005, 33(11): 50-53.

    LU X J, ZHANG Q, MA Z Q, et al. Study of hydrothermal aging effect on mechanical properties of carbon fiber/epoxy resin composites[J]. Journal of Materials Engineering, 2005, 33(11): 50-53(in Chinese).
    [5] 冯青, 李敏, 顾轶卓, 等. 不同湿热条件下碳纤维/环氧复合材料湿热性能实验研究[J]. 复合材料学报, 2010, 27(6): 16-20.

    FENG Q, LI M, GU Y Z, et al. Experimental research on hygrothermal properties of carbon fiber/epoxy resin composite under different hygrothermal conditions[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 16-20(in Chinese).
    [6] 李静. 纤维增强树脂基复合材料的吸湿性和湿变形[J]. 航天返回与遥感, 2010, 31(2): 69-74.

    LI J. Moisture absorption and soaking deformation of fiber reinforced resin composites[J]. Spacecraft Recovery & Remote Sensing, 2010, 31(2): 69-74(in Chinese).
    [7] 张利军, 肇研, 罗云烽, 等. 湿热循环对CCF300/QY8911复合材料界面性能的影响[J]. 材料工程, 2012, 40(2): 25-29.

    ZHANG L J, ZHAO Y, LUO Y F, et al. On the interfacial properties of CCF300/QY8911 composite with cyclical hygrothermal treatments[J]. Journal of Materials Engineering, 2012, 40(2): 25-29(in Chinese).
    [8] 张晖, 阳建红, 李海斌, 等. 湿热老化环境对环氧树脂性能影响研究[J]. 兵器材料科学与工程, 2010, 33(3): 41-43.

    ZHANG H, YANG J H, LI H B, et al. Effects of hydrothermal aging on properties of epoxy resin[J]. Ordnance Material Science and Engineering, 2010, 33(3): 41-43(in Chinese).
    [9] 赵鹏. 纤维增强树脂基复合材料湿热老化性能研究[D]. 南京: 南京航空航天大学, 2009: 5-20.

    ZHAO P. Research on the hygrothermal aging performance of FRP composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009: 5-20(in Chinese).
    [10] ZHOKH A, STRIZHAK P. Crossover between Fickian and non-Fickian diffusion in a system with hierarchy[J]. Microporous and Mesoporous Materials, 2019, 282: 22-28.
    [11] PLACETTE M D, FAN X J, ZHAO J H, et al. Dual stage modeling of moisture absorption and desorption in epoxy mold compounds[J]. Microelectronics Reliability, 2012, 52(7): 1401-1408.
    [12] CARTER H G, KIBLER K G. Langmuir-type model for anomalous moisture diffusion in composite resins[J]. Journal of Composite Materials, 1978, 12(2): 118-131.
    [13] BARINK M, MAVINKURVE A, JANSSEN J. Predicting non-Fickian moisture diffusion in EMCs for application in micro-electronic devices[J]. Microelectronics Reliability, 2016, 62(7): 45-49.
    [14] JACOBS P M, JONES E R. Diffusion of moisture into two-phase polymers[J]. Journal of Materials Science, 1989, 24(7): 2343-2347.
    [15] WONG K J, LOW K O, ISRAR H A, et al. Thickness-dependent non-Fickian moisture absorption in epoxy molding compounds[J]. Microelectronics Reliability, 2016, 65(10): 160-166.
    [16] LA SAPONARA V. Environmental and chemical degradation of carbon/epoxy and structural adhesive for aerospace applications: Fickian and anomalous diffusion, Arrhenius kinetics[J]. Composite Structures, 2011, 93(9): 2180-2195.
    [17] 冯宇, 何宇廷, 安涛, 等. 湿热环境对航空复合材料加筋板压缩屈曲和后屈曲性能的影响[J]. 材料工程, 2015, 43(5): 81-88.

    FENG Y, HE Y T, AN T, et al. Influence of hygrothermal environment on compressive buckling and post-buckling performance of aero composite stiffened panel[J]. Journal of Materials Engineering, 2015, 43(5): 81-88(in Chinese).
    [18] 谭翔飞, 谭鹏达, 何宇廷, 等. 航空碳纤维增强树脂基复合材料加筋壁板吸湿行为[J]. 材料工程, 2018, 46(12): 61-69.

    TAN X F, TAN P D, HE Y T, et al. Moisture behavior of aeronautic carbon fiber reinforced resin composite stiffened panel[J]. Journal of Materials Engineering, 2018, 46(12): 61-69(in Chinese).
    [19] WONG K J. Moisture absorption characteristics and effects on mechanical behaviour of carbon/epoxy composite: Application to bonded patch repairs of composite structures[D]. Dijon: Université de Bourgogne, 2013: 31-42.
    [20] ASTM. Standard test method for polymer matrix composite materials: ASTM D5229/D5229M[S]. West Conshohocken: ASTM International, 1992: 1-15.
    [21] ZHANG T J, LI S L, CHANG F, et al. An experimental and numerical analysis for stiffened composite panel subjected to shear loading in hygrothermal environment[J]. Composite Structures, 2016, 138: 107-115.
  • 期刊类型引用(16)

    1. 郭斐,陈惟杰,朱逸凡,张小红. 一种融合相位、振幅与频率的GNSS-IR土壤湿度反演方法. 武汉大学学报(信息科学版). 2024(05): 715-721 . 百度学术
    2. 钟雪,杨明龙,唐秀娟,韩澳禧. 土壤水分卫星遥感反演方法研究进展. 干旱气象. 2024(04): 637-648 . 百度学术
    3. 王式太,姜新伟,殷敏,王文贯,兰小艳,杨可心. GA辅助NLS的GNSS-IR土壤湿度反演方法. 大地测量与地球动力学. 2023(02): 180-185 . 百度学术
    4. 聂士海,王龙,王梦柯,李鹏,梁磊,黄丹妮,刘斌. 结合机器学习的GNSS-IR多卫星双频组合土壤湿度反演. 测绘通报. 2023(10): 98-104 . 百度学术
    5. 刘蓬,丁开华,刘源,王靖淇,王嘉颐. 国内外测站GNSS-IR土壤湿度反演的对比分析. 测绘科学. 2022(12): 74-82+119 . 百度学术
    6. 杨昌智,毛克彪,孙一丹,王一帆,王平,郭中华. 北斗信号GNSS-R土壤湿度反演研究进展. 高技术通讯. 2022(11): 1196-1201 . 百度学术
    7. 裴悦琨,韩心新. GNSS-R探测土壤湿度综述. 大地测量与地球动力学. 2021(02): 140-144 . 百度学术
    8. 张双成,王涛,王丽霞,张京江,刘宁,赵桂生. BDS/GPS多卫星解译土壤湿度变化研究. 测绘科学. 2021(07): 7-14 . 百度学术
    9. 余罗兼,童昕,沈国浪,李占福. 运用GA-SVM模型的砂石骨料分类方法. 华侨大学学报(自然科学版). 2020(02): 137-141 . 百度学术
    10. 徐良骥,刘悦,谌芳,张坤. 基于GNSS-R技术的矿区复垦地土壤湿度反演方法研究. 煤炭科学技术. 2020(04): 129-135 . 百度学术
    11. 孙波,梁勇,汉牟田,杨磊,荆丽丽,洪学宝. 基于GPS多星三频数据融合的GNSS-IR土壤湿度反演方法. 北京航空航天大学学报. 2020(06): 1089-1096 . 本站查看
    12. 李占杰,陈基培,刘艳民,姚晓磊,鱼京善. 土壤水分遥感反演研究进展. 北京师范大学学报(自然科学版). 2020(03): 474-481 . 百度学术
    13. 陈堃,沈飞,曹新运,朱逸凡. 基于深度置信网络的GNSS-IR土壤湿度反演. 测绘通报. 2020(09): 100-105 . 百度学术
    14. 应烨伟,曾松伟,赵阿勇,颜菲菲. 基于颈环采集节点的母羊产前行为识别方法. 农业工程学报. 2020(21): 210-219 . 百度学术
    15. 刘悦,徐良骥,宋承运,孟雪莹. 基于GNSS-R的煤矿区复垦地土壤湿度反演. 安徽理工大学学报(自然科学版). 2020(05): 29-35 . 百度学术
    16. 刘倍雄,张绛丽,王璐. 基于二次解重扩算法的全球卫星导航系统抗干扰误差分析. 电子测量技术. 2019(18): 61-64 . 百度学术

    其他类型引用(13)

  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  572
  • HTML全文浏览量:  135
  • PDF下载量:  31
  • 被引次数: 29
出版历程
  • 收稿日期:  2020-09-21
  • 录用日期:  2020-11-20
  • 网络出版日期:  2021-09-20

目录

    /

    返回文章
    返回
    常见问答