留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋翼翼型高维多目标气动优化设计

宋超 周铸 李伟斌 罗骁

宋超, 周铸, 李伟斌, 等 . 旋翼翼型高维多目标气动优化设计[J]. 北京航空航天大学学报, 2022, 48(1): 95-105. doi: 10.13700/j.bh.1001-5965.2020.0543
引用本文: 宋超, 周铸, 李伟斌, 等 . 旋翼翼型高维多目标气动优化设计[J]. 北京航空航天大学学报, 2022, 48(1): 95-105. doi: 10.13700/j.bh.1001-5965.2020.0543
SONG Chao, ZHOU Zhu, LI Weibin, et al. Many-objective aerodynamic optimization design for rotor airfoils[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 95-105. doi: 10.13700/j.bh.1001-5965.2020.0543(in Chinese)
Citation: SONG Chao, ZHOU Zhu, LI Weibin, et al. Many-objective aerodynamic optimization design for rotor airfoils[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 95-105. doi: 10.13700/j.bh.1001-5965.2020.0543(in Chinese)

旋翼翼型高维多目标气动优化设计

doi: 10.13700/j.bh.1001-5965.2020.0543
详细信息
    通讯作者:

    李伟斌, E-mail: liweibin@nudt.edu.cn

  • 中图分类号: V221.52

Many-objective aerodynamic optimization design for rotor airfoils

More Information
  • 摘要:

    先进旋翼翼型设计是典型的多设计点、多目标优化问题,常规优化方法已无法满足翼型高维多目标优化设计的要求。基于分解的多目标优化算法(MOEA/D),建立了考虑高低速升阻特性、力矩特性、阻力发散特性等的旋翼翼型高维多目标优化设计方法,并采用高精度kriging模型以提高优化设计效率。针对旋翼内段、中段翼型进行了5个设计目标的全局优化设计,采用自组织图映射(SOM)方法对最优Pareto解集进行了聚类分析。典型翼型CFD结果分析表明,中段翼型低速力矩系数幅值减小约50.7%,高速最大升力系数提高约6.5%,最大升阻比提高约7.7%,同时阻力发散特性得到改善,内段翼型同样取得了良好的多目标优化效果。研究表明,MOEA/D算法对高维多目标气动优化设计问题具有很好的适应性,能有效提升旋翼高低速气动性能设计的能力。

     

  • 图 1  OA309翼型计算网格

    Figure 1.  Computational grids for OA309 airfoil

    图 2  OA309翼型表面压力系数分布计算值与实验值对比(Ma=0.6, Re=2.5×106, Cl=0.6)

    Figure 2.  Comparison of pressure coefficient at surface between numerical results and experimental data for OA309 airfoil (Ma=0.6, Re=2.5×106, Cl=0.6)

    图 3  OA309翼型极曲线计算值与实验值对比(Ma=0.6, Re=2.5×106)

    Figure 3.  Comparison of polars between numerical results and experimental data for OA309 airfoil (Ma=0.6, Re=2.5×106)

    图 4  旋翼翼型优化最优Pareto前沿

    Figure 4.  Optimal Pareto front for optimization of rotor airfoil

    图 5  最优Pareto前沿SOM可视化结果(9%厚度翼型)

    Figure 5.  Visualization results of optimal Pareto front using SOM (airfoil with 9% thickness)

    图 6  OA309翼型与优化翼型形状

    Figure 6.  Geometry shape of OA309 and optimized airfoils

    图 7  OA309翼型与优化翼型升阻特性对比(Ma=0.4, Re=3.2×106)

    Figure 7.  Comparison of lift drag ratio curves between OA309 and optimized airfoils(Ma=0.4, Re=3.2×106)

    图 8  OA309翼型与优化翼型力矩特性对比(Ma=0.4, Re=3.2×106)

    Figure 8.  Comparison of moment coefficient curves between OA309 and optimized airfoils(Ma=0.4, Re=3.2×106)

    图 9  OA309翼型与优化翼型升阻特性对比(Ma=0.6, Re=4.8×106)

    Figure 9.  Comparison of lift drag ratio curves between OA309 and optimized airfoils(Ma=0.6, Re=4.8×106)

    图 10  OA309翼型与优化翼型力矩特性对比(Ma=0.6, Re=4.8×106)

    Figure 10.  Comparison of moment coefficient curves between OA309 and optimized airfoil(Ma=0.6, Re=4.8×106)

    图 11  OA309翼型与优化翼型阻力系数随马赫数变化特性对比(Cl=0, Re=Ma×8×106)

    Figure 11.  Comparison of drag coefficient varying with Mach number between OA309 and optimized airfoils(Cl=0, Re=Ma×8×106)

    图 12  最优Pareto前沿SOM可视化结果(12%厚度翼型)

    Figure 12.  Visualization results of optimal Pareto front using SOM (airfoil with 12% thickness)

    图 13  OA312翼型与优化翼型形状

    Figure 13.  Geometry shape of OA312 and optimized airfoils

    图 14  OA312翼型与优化翼型升阻比对比(Ma=0.4, Re=3.2×106)

    Figure 14.  Comparison of lift-to-drag ratio curves between OA312 and optimized airfoils (Ma=0.4, Re=3.2×106)

    图 15  OA312翼型与优化翼型力矩特性对比(Ma=0.4, Re=3.2×106)

    Figure 15.  Comparison of moment coefficient curves between OA312 and optimized airfoils (Ma=0.4, Re=3.2×106)

    图 16  OA312翼型与优化翼型升阻特性对比(Ma=0.6, Re=4.8×106)

    Figure 16.  Comparison of lift-to-drag ratio curves between OA312 and optimized airfoils (Ma=0.6, Re=4.8×106)

    图 17  OA312翼型与优化翼型力矩特性对比(Ma=0.6, Re=4.8×106)

    Figure 17.  Comparison of moment coefficient curves between OA312 and optimized airfoils (Ma=0.6, Re=4.8×106)

    图 18  OA312翼型与优化翼型阻力系数随马赫数变化特性对比(Cl=0, Re=Ma×8×106)

    Figure 18.  Comparison of drag coefficient varying with Mach number between OA312 and optimized airfoils (Cl=0, Re=Ma×8×106)

    表  1  OA309翼型气动特性随网格量的变化

    Table  1.   Aerodynamic performance of OA309 airfoil with different amounts of computational grids

    网格编号 网格量 Cl Cd
    1 16 714 0.50 0. 011 293
    2 33 744 0.50 0. 010 831
    3 50 370 0.50 0. 010 758
    下载: 导出CSV

    表  2  9%厚度旋翼翼型设计目标与约束

    Table  2.   Design objectives and constraints for a rotor airfoil with 9% thickness

    编号 设计状态 设计目标 约束
    1 Ma=0.4, Re=3.2×106, Cl=Clmax max: Cl
    2 Ma=0.4, Re=3.2×106, |Cm|=|Cmmax| min: |Cm|
    3 Ma=0.6, Re=4.8×106, Cl=Clmax max: Cl
    4 Ma=0.6, Re=4.8×106, Cl=0.6 min: Cd
    5 Ma=Mdd0, Re=Ma×8×106Cl=0 min: Cd ·Cm·(design) < |Cm|(OA309)
    下载: 导出CSV

    表  3  设计状态1的kriging模型交叉验证结果

    Table  3.   Results of cross validation for kriging model under design condition 1

    气动性能 最大预测误差/% 平均预测误差/%
    Cl 0.043 7 0.016 1
    Cd 0.191 1 0.088 0
    Cm 2.596 0 0.697 4
    下载: 导出CSV

    表  4  Pareto前沿中选取的8组最优目标

    Table  4.   Eight groups of optimal objectives selected from Pareto front

    ID f1 f2 f3 f4 f5
    1 -1.006 9 0.485 2 -0.973 2 1.027 5 0.338 7
    2 -1.000 7 0.494 3 -1.002 6 0.991 5 0.169 0
    3 -1.000 8 0.476 9 -1.004 9 0.992 6 0.128 4
    4 -1.009 8 0.478 3 -0.984 1 1.024 3 0.131 0
    5 -1.009 0 0.423 1 -0.983 8 1.020 1 0.111 5
    6 -1.009 0 0.471 0 -0.984 2 1.021 4 0.108 8
    7 -1.007 5 0.489 1 -0.984 7 1.015 4 0.090 7
    8 -1.002 8 0.431 9 -0.976 9 1.014 5 0.179 6
    下载: 导出CSV

    表  5  OA309翼型与优化翼型几何信息

    Table  5.   Geometry information of OA309 and optimized airfoils

    翼型 最大相对厚度 面积
    OA309翼型 0.087 9 0.063 76
    优化翼型 0.088 4 0.063 12
    下载: 导出CSV

    表  6  12%厚度旋翼翼型设计目标与约束

    Table  6.   Design objectives and constraints for a rotor airfoil with 12% thickness

    编号 设计状态 设计目标 约束
    1 Ma=0.4, Re=3.2×106, Cl=Clmax max: Cl
    2 Ma=0.4, Re=3.2×106, |Cm|=|Cmmax| min: |Cm|
    3 Ma=0.6, Re=4.8×106, Cl/Cd=(Cl/Cd)max max: Cl/Cd
    4 Ma=0.72, Re=5.8×106, Cl=0 min: Cd
    5 Ma=Mdd0, Re=Ma×8×106Cl=0 min: Cd |Cm|(design) < |Cm|(OA312)
    下载: 导出CSV

    表  7  Pareto前沿中选取的5组最优目标

    Table  7.   Five groups of optimal objectives selected from Pareto front

    ID f1 f2 f3 f4 f5
    1 -1.000 0 0.992 8 -0.998 9 0.958 4 0.963 7
    2 -0.992 6 0.992 5 -1.005 4 0.953 6 0.946 3
    3 -1.000 1 0.994 3 -0.990 0 0.957 1 0.956 1
    4 -0.992 9 0.992 4 -1.002 4 0.954 1 0.997 4
    5 -0.992 6 0.994 8 -0.995 7 0.952 9 0.995 7
    下载: 导出CSV

    表  8  OA312翼型与优化翼型几何信息

    Table  8.   Geometry information of OA312 and optimized airfoils

    翼型 最大相对厚度 面积
    OA309翼型 0.119 8 0.084 1
    优化翼型 0.119 8 0.083 7
    下载: 导出CSV
  • [1] 邓景辉. 直升机旋翼气动基础技术[M]. 北京: 航空工业出版社, 2013: 1-3, 112, 256.

    DENG J H. Aerodynamic methodology of a helicopter rotor[M]. Beijing: Aviation Industry Press, 2013: 1-3, 112, 256(in Chinese).
    [2] LEISHMAN G J. Principles of helicopter aerodynamics[M]. Cambridge: Cambridge University Press, 2006: 1, 387.
    [3] 杨慧, 宋文萍, 韩忠华, 等. 旋翼翼型多目标多约束气动优化设计[J]. 航空学报, 2012, 33(7): 1218-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201207008.htm

    YANG H, SONG W P, HAN Z H, et al. Multi-objective and multi-constrained optimization design for a helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1218-1226(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201207008.htm
    [4] 王清, 招启军. 基于遗传算法的旋翼翼型综合气动优化设计[J]. 航空动力学报, 2016, 31(6): 1487-1495. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201606026.htm

    WANG Q, ZHAO Q J. Synthetical optimization design of rotor airfoil by genetic algorithm[J]. Journal of Aerospace Power, 2016, 31(6): 1487-1495(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201606026.htm
    [5] WANG Q, ZHAO Q J. Rotor aerodynamic shape design for improving performance of an unmanned helicopter[J]. Aerospace Science and Technology, 2019, 13(30): 1-10.
    [6] MASSARO A, BENINI E. Multi-objective optimization of helicopter airfoils using surrogate-assisted memetic algorithms[J]. Journal of Aircraft, 2012, 49(2): 375-383. doi: 10.2514/1.C001017
    [7] ZHAO K, GAO Z H, HUANG J T, et al. Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1541-1552. doi: 10.1016/j.cja.2016.09.005
    [8] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part Ⅰ: Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. doi: 10.1109/TEVC.2013.2281535
    [9] ZHANG Q, LI H. MOEA/D: A multi-objective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. doi: 10.1109/TEVC.2007.892759
    [10] PRYKE A, MOSTAGHIM S, NAZEMI A. Heatmap visualization of population based multi-objective algorithms[C] //Proceedings of Conference on Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2007: 361-375.
    [11] INSELBERG A. Parallel coordinates: Visual multidimensional geometry and its applications[M]. Berlin: Springer, 2009.
    [12] KOHONEN T. Self-organizing maps[M]. Berlin: Springer, 2001.
    [13] HOFFMAN P, GRINSTEIN G, MARX K, et al. DNA visual and analytic data mining[C]//1997 Proceedings of IEEE Visual Conference. Piscataway: IEEE Press, 1997: 437-441.
    [14] BLASCO X, HERRERO J M, SANCHIS J, et al. A new graphical visualization of n-dimensional Pareto front for decision-making in multi-objective optimization[J]. Information Sciences, 2008, 178(20): 3908-3924. doi: 10.1016/j.ins.2008.06.010
    [15] KUMANO T, JEONG S, OBAYASHI S, et al. Multidisciplinary design optimization of wing shape for a small jet aircraft using kriging model[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
    [16] 王超. 基于代理模型的高效气动优化与高维多目标问题研究[D]. 西安: 西北工业大学, 2018.

    WANG C. Research on surrogate-based efficient aerodynamic optimization and many-objective problems[D]. Xi'an: Northwestern Polytechnical University, 2018(in Chinese).
    [17] DAS I, DENNIS J E. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems[J]. SIAM Journal on Optimization, 1998, 8(3): 631-657. doi: 10.1137/S1052623496307510
    [18] 黄江涛, 周铸, 刘刚, 等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究[J]. 航空学报, 2018, 39(5): 121731. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805009.htm

    HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121731(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805009.htm
    [19] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. doi: 10.2514/1.29958
    [20] GIUNTA A, WOJTKIEWICZ S, ELDRED M. Overview of modern design of experiments methods for computational simulations[C]//41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
  • 加载中
图(18) / 表(8)
计量
  • 文章访问数:  520
  • HTML全文浏览量:  73
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-23
  • 录用日期:  2021-02-05
  • 网络出版日期:  2022-01-20

目录

    /

    返回文章
    返回
    常见问答