留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泡沫铜/低熔点合金复合相变材料凝固放热分析

侯天睿 邢玉明 郑文远 郝兆龙

侯天睿, 邢玉明, 郑文远, 等 . 泡沫铜/低熔点合金复合相变材料凝固放热分析[J]. 北京航空航天大学学报, 2022, 48(3): 438-446. doi: 10.13700/j.bh.1001-5965.2020.0553
引用本文: 侯天睿, 邢玉明, 郑文远, 等 . 泡沫铜/低熔点合金复合相变材料凝固放热分析[J]. 北京航空航天大学学报, 2022, 48(3): 438-446. doi: 10.13700/j.bh.1001-5965.2020.0553
HOU Tianrui, XING Yuming, ZHENG Wenyuan, et al. Solidification heat release of copper foam/low-melting-point alloy composite phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 438-446. doi: 10.13700/j.bh.1001-5965.2020.0553(in Chinese)
Citation: HOU Tianrui, XING Yuming, ZHENG Wenyuan, et al. Solidification heat release of copper foam/low-melting-point alloy composite phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 438-446. doi: 10.13700/j.bh.1001-5965.2020.0553(in Chinese)

泡沫铜/低熔点合金复合相变材料凝固放热分析

doi: 10.13700/j.bh.1001-5965.2020.0553
基金项目: 

航空科学基金 20172851018

详细信息
    通讯作者:

    郝兆龙, E-mail: haozhaolong@buaa.edu.cn

  • 中图分类号: TQ051.5;TK124

Solidification heat release of copper foam/low-melting-point alloy composite phase change material

Funds: 

Aeronautical Science Foundation of China 20172851018

More Information
  • 摘要:

    为研究泡沫铜/低熔点合金(LMPA)复合相变材料在间歇放热工作环境下恢复至初始状态的能力及不同孔隙率泡沫铜的添加对其凝固放热过程的影响,通过数值模拟对比分析了47合金、正二十三烷与泡沫铜复合前后的凝固放热过程,并调节泡沫铜/47合金复合材料孔隙率计算模拟芯片温度在凝固放热过程中温度随时间变化曲线。结果表明:泡沫铜的添加对2类材料凝固过程均有促进作用,模拟芯片恢复至目标温度所需时间分别被缩短6.6%和47.7%。因体积潜热值的差距,泡沫铜/47合金凝固时需放出更多热量,恢复至目标温度的时间较长,是正二十三烷复合相变材料的1.52倍。随着孔隙率的增大,复合相变材料恢复至室温状态所用时长变化不大,考虑到孔隙率对相变热控过程中的影响,实际使用时应综合考虑。

     

  • 图 1  相变热控装置示意图

    Figure 1.  Schematic diagram of phase change thermal control device

    图 2  网格数量无关性验证

    Figure 2.  Verification of independence of number of grids

    图 3  时间步长无关性验证

    Figure 3.  Verification of independence of time step length

    图 4  计算网格划分

    Figure 4.  Computing grid generation

    图 5  网格质量

    Figure 5.  Grid quality

    图 6  实验结果与数值模拟对比[7]

    Figure 6.  Comparison of experimental results and numerical simulation[7]

    图 7  四种材料温度随时间变化曲线

    Figure 7.  Change of temperature of four materials with time

    图 8  泡沫铜/正二十三烷凝固过程温度场云图

    Figure 8.  Temperature field contour of copper foam/n-tricosane solidification process

    图 9  泡沫铜/47合金凝固过程温度场云图

    Figure 9.  Temperature field contour of copper foam/47 alloy solidification process

    图 10  泡沫铜/正二十三烷凝固过程速度场云图

    Figure 10.  Velocity field contour of copper foam/n-tricosane solidification process

    图 11  泡沫铜/47合金凝固过程速度场云图

    Figure 11.  Velocity field contour of copper foam/47 alloy solidification process

    图 12  不同孔隙率泡沫铜/47合金凝固放热过程温度曲线

    Figure 12.  Temperature curves of solidification exothermic process of copper foam/47 alloy with different porosity

    表  1  材料物性参数

    Table  1.   Material's physical property parameters

    物性参数 47合金 正二十三烷 泡沫铜 316L不锈钢
    相变温度/℃ 51 47.6
    潜热值/(kJ·kg-1) 32.4 234.4
    密度/(kg·m-3) 9 160 797 8 978 8 030
    比热容/(J·(kg·K)-1) 160 2 360 381 502.5
    导热系数/(W·(m·K)-1) 11.7 0.21 387.6 16.27
    黏度/(Pa·S) 1.1 0.014 8
    热膨胀率/ T-1 2.44×10-5 9×10-4
    下载: 导出CSV
  • [1] 陈秦. 石墨泡沫炭基相变储能材料传热分析[D]. 哈尔滨: 哈尔滨工程大学, 2013.

    CHEN Q. Heat transfer analysis of graph-ite goams infiltrated with phase change meterials for energy storage[D]. Harbin: Harbin Engineering University, 2013(in Chinese).
    [2] LANSANCE C J M, SIMONS R E. Advances in high-performance cooling for electronics[J]. Electronics Cooling, 2005, 11(4): 22-39.
    [3] ZILIO C, RIGHETTI G, MANCIN S, et al. Active and passive cooling technologies for thermal management of avionics in helicopters: Loop heat pipes and mini-vapor cycle system[J]. Thermal Science and Engineering Progress, 2018, 5: 107-116. doi: 10.1016/j.tsep.2017.11.002
    [4] TONG X C. Advanced materials for thermal management of electronic packaging[M]. Berlin: Springer, 2011: 39-65.
    [5] STEINBERG D S. Cooling techniques for electronic equipment[M]. New York: Wiley, 1980.
    [6] MEHLING H, CABEZA L F, YAMAHA M. Phase change materials: Application fundamentals[M]//PAKSOY H O. Thermal energy storage for sustainable energy consumption. Berlin: Springer, 2007: 279-313.
    [7] 赵亮, 邢玉明, 刘鑫, 等. 基于硬脂酸复合相变材料的被动热沉性能[J]. 北京航空航天大学学报, 2019, 45(5): 970-979. doi: 10.13700/j.bh.1001-5965.2018.0513

    ZHAO L, XING Y M, LIU X, et al. Performance of a passive heat sink using stearic acid based composite as phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 970-979(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0513
    [8] GE H, LI H, MEI S, et al. Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area[J]. Renewable & Sustainable Energy Reviews, 2013, 21(5): 331-346.
    [9] 葛浩山. 低熔点金属相变传热方法的研究与应用[D]. 北京; 中国科学院大学, 2013.

    GE H S. Research and application of phase transition heat transfer method for low melting point metals[D]. Beijing: University of Chinese Academy of Sciences, 2013(in Chinses).
    [10] 吴雨越. 基于低熔点合金的相变储能式散热器瞬态性能实验研究[D]. 杭州: 浙江大学, 2016.

    WU Y Y. Experimental study on transient performance of phase change energy storage radiator based on low melting point alloy[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
    [11] WANG Z, ZHANG Z, JIA L, et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering, 2015, 78: 428-436. doi: 10.1016/j.applthermaleng.2015.01.009
    [12] 丁小恒, 孟松鹤, 解维华, 等. 金属相变材料热沉传热试验与仿真[J]. 复合材料学报, 2013, 30(S1): 205-211. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1040.htm

    DING X H, MENG S H, XIE W H, et al. Experiment and simulation for metallic phase change materials heat sink[J]. Acta Materiae Compositae Sinica, 2013, 30(S1): 205-211(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1040.htm
    [13] 胡锦炎. 固液相变储能热沉的理论与实验研究[D]. 武汉: 华中科技大学, 2017.

    HU J Y. Theoretical and experimental research on thermal storage heat sink based on solid-liquid phase change[D]. Wuhan: Huazhong University of Science and Technology, 2017(in Chinese).
    [14] ZHAO L, XING Y, LIU X. Experimental investigation on the thermal management performance of heat sink using low melting point alloy as phase change material[J]. Renewable Energy, 2020, 146(2): 1578-1587.
    [15] MESALHY O, LAFDI K, ELGAFY A, et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix[J]. Energy Conversion and Management, 2005, 46(6): 847-867. doi: 10.1016/j.enconman.2004.06.010
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  35
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-27
  • 录用日期:  2020-11-01
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回
    常见问答