留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞机波浪水面迫降过程中极限冲击载荷数值研究

赵芸可 刘沛清

赵芸可, 刘沛清. 飞机波浪水面迫降过程中极限冲击载荷数值研究[J]. 北京航空航天大学学报, 2021, 47(5): 1025-1037. doi: 10.13700/j.bh.1001-5965.2020.0556
引用本文: 赵芸可, 刘沛清. 飞机波浪水面迫降过程中极限冲击载荷数值研究[J]. 北京航空航天大学学报, 2021, 47(5): 1025-1037. doi: 10.13700/j.bh.1001-5965.2020.0556
ZHAO Yunke, LIU Peiqing. Numerical study on maximum impact load during aircraft ditching on wave surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 1025-1037. doi: 10.13700/j.bh.1001-5965.2020.0556(in Chinese)
Citation: ZHAO Yunke, LIU Peiqing. Numerical study on maximum impact load during aircraft ditching on wave surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 1025-1037. doi: 10.13700/j.bh.1001-5965.2020.0556(in Chinese)

飞机波浪水面迫降过程中极限冲击载荷数值研究

doi: 10.13700/j.bh.1001-5965.2020.0556
详细信息
    作者简介:

    赵芸可 女, 博士研究生。主要研究方向:流体力学

    刘沛清 男, 博士, 教授, 博士生导师。主要研究方向:流动分离与控制、大迎角空气动力学、飞行器气动布局等

    通讯作者:

    刘沛清, E-mail:lpq@buaa.edu.cn

  • 中图分类号: V11;V19

Numerical study on maximum impact load during aircraft ditching on wave surface

More Information
  • 摘要:

    针对飞机在波浪水面迫降过程中机身所受的极限冲击载荷大小及其物理成因问题,采用数值模拟方法展开研究,结合有限体积法和流体体积(VOF)法捕捉自由面,采用六自由度(6DOF)模型和整体运动网格(GMM)处理水面与飞机之间的相对运动,模拟飞机的迫降过程。通过选择飞机相对水面下沉速度最大的波面相位作为迫降触水位置,预报机身所受的极限冲击载荷大小。结果表明:在波浪水面迫降的触水阶段中,机身遭遇了平静水面未预见的冲击峰,同时冲击峰值大小与飞机相对水面的下沉速度有关。此外,对比了在5种不同波高海况下飞机迫降的运动姿态和过载变化历程,给出了波高对极限冲击载荷和其余各参数峰值的影响规律,为飞机载荷分布设计提供参考依据。

     

  • 图 1  NACA TN 2929模型F的表面网格

    Figure 1.  Surface mesh of NACA TN 2929 model F

    图 2  模型F的实验结果和数值模拟结果对比

    Figure 2.  Comparison between experimental and numerical simulation results for model F

    图 3  飞机模型表面网格

    Figure 3.  Surface mesh of aircraft model

    图 4  波浪水面形状与垂向速度分布

    Figure 4.  Wavy water surface shape and vertical velocity distribution

    图 5  π相位触水平静与波浪水面迫降过载综合曲线

    Figure 5.  Overload history of ditching on calm and wavy watersurface with water contact at π phase

    图 6  平静与波浪水面飞机触水部位(π相位)

    Figure 6.  Water contact position of aircraft on calm and wavy water surface (π phase)

    图 7  触水阶段飞机姿态与水面形态(π相位)

    Figure 7.  Aircraft attitude and water surface morphology during water contact stage (π phase)

    图 8  触水阶段过载曲线(π相位)

    Figure 8.  Overload history during water contact stage (π phase)

    图 9  冲击峰值时刻机身触水部位压力系数云图(π相位)

    Figure 9.  Pressure coefficient contours on water contact area of fuselage at the moment of impact peak (π phase)

    图 10  冲击阶段飞机姿态与水面形态(π相位)

    Figure 10.  Aircraft attitude and water surface morphologyduring impact stage (π phase)

    图 11  冲击阶段运动状态与过载变化历程(π相位)

    Figure 11.  Motion state and overload history during impact stage (π phase)

    图 12  俯仰力矩峰值时刻入水部位的压力系数云图(π相位)

    Figure 12.  Pressure coefficient contours on water contact area at the moment of pitch moment peak (π phase)

    图 13  π/2相位触水平静与波浪水面迫降过载综合曲线

    Figure 13.  Overload history of ditching on calm and wavywater surface with π/2 phase

    图 14  平静与波浪水面飞机触水部位π/2相位

    Figure 14.  Water contact position of aircraft on calm and wavy water surface (π/2 phase)

    图 15  触水阶段飞机姿态与水面形态(π/2相位)

    Figure 15.  Aircraft attitude and water surface morphologyduring water contact stage (π/2 phase)

    图 16  触水阶段运动状态和过载变化历程(π/2相位)

    Figure 16.  Motion state and overload history duringwater contact stage (π/2 phase)

    图 17  0.18 s时刻机身触水部位压力系数云图(π/2相位)

    Figure 17.  Pressure coefficient contours on water contact area of fuselage at 0.18 s (π/2 phase)

    图 18  冲击阶段飞机姿态与水面形态(π/2相位)

    Figure 18.  Aircraft attitude and water surface morphologyduring impact stage (π/2 phase)

    图 19  冲击阶段运动状态与过载变化历程(π/2相位)

    Figure 19.  Movement state and overload history during impact stage (π/2 phase)

    图 20  波浪环境入水部位的压力系数云图(π/2相位)

    Figure 20.  Pressure coefficient contours on wavy water contact area (π/2 phase)

    图 21  不同波高的水面形态和速度分布(π相位)

    Figure 21.  Water surface morphology and velocity distribution with different wave heights (π phase)

    图 22  水平过载对比

    Figure 22.  Horizontal overload comparison

    图 23  垂向过载对比(π相位)

    Figure 23.  Vertical overload comparison (π phase)

    图 24  第1个冲击峰值时刻触水部位压力分布(π相位)

    Figure 24.  Pressure distribution on water contact area at the moment of the 1st impact peak (π phase)

    图 25  不同波高的水面形态和速度分布(π/2相位)

    Figure 25.  Water surface morphology and velocity distributionwith different wave heights (π/2 phase)

    图 26  水平过载对比(π/2相位)

    Figure 26.  Horizontal overload comparison (π/2 phase)

    图 27  垂向过载对比(π/2相位)

    Figure 27.  Vertical overload comparison (π/2 phase)

  • [1] PATEL A A, GREENWOOD J R P.Transport water impact and ditching performance: DOT/FAA/AR-95/54[R].Washington, D.C.: Galaxy Scientific Corp Pleasantville, 1996.
    [2] THOMSON R G, CAIAFA C.Structural response of transport airplanes in crash situations: DOT/FAA/CT83/42[R].Washinton, D.C.: Federal Aviation Administration Technical Center Atlantic City, 1983.
    [3] VON KARMAN T.The impact of seaplane floats during landing: NACATN321[R].Washington, D.C.: NACA, 1929.
    [4] WAGNER H.Phenomena associated with impacts and sliding on liquid surfaces[J].Journal of Applied Mechanics, 1932, 12(4):193-215. http://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/020711235357.html
    [5] DOBROVOL'SKAYA Z N.On some problems of similarity flow of fluid with a free surface[J].Journal of Fluid Mechanics, 1969, 36(4):805-829. doi: 10.1017/S0022112069001996
    [6] GREENHOW M.Wedge entry into initially calm water[J].Applied Ocean Research, 1987, 9(4):214-223. doi: 10.1016/0141-1187(87)90003-4
    [7] ZHAO R, FALTINSEN O.Water entry of two-dimensional bodies[J].Journal of Fluid Mechanics, 1993, 246:593-612. doi: 10.1017/S002211209300028X
    [8] ZHAO R, FALTINSEN O, AARSNES J.Water entry of arbitrary two-dimensional sections with and without flow separation[C]//Proceedings of the 20st Symposium on Naval Hydrodynamics.Washington, D.C.: The National Academies Press, 1997: 408-423.
    [9] MCBRIDE E E, FISHER L J.Experimental investigation of the effect of rear-fuselage shape on ditching behavior: TN 2929[R].Washington, D.C.: NACA, 1953.
    [10] 魏飞, 许靖锋.飞机模型水上迫降试验测控系统设计[M]//褚林堂, 叶树林, 译.北京:航空工业出版社, 2011:383-391.

    WEI F, XU J F.Design of measurement and control system for forced landing test on airplane model[M]//CHU L T, YE S L, translated.Beijing:Aviation Industry Press, 2011:383-391(in Chinese).
    [11] 蒲锦华, 张科, 魏飞, 等.摄像测量技术在飞机模型水上迫降试验中的应用[C]//2017年(第三届)中国航空科学技术大会论文集(下册).北京: 中国航空学会, 2017: 340-345.

    PU J H, ZHANG K, WEI F, et al.Application of camera measurement technology in forced landing test on aircraft model[C]//Proceedings of the 2017(3rd) China Aviation Science and Technology Conference (Volume 2).Beijing: Chinese Society of Aeronautics and Astronautics, 2017: 340-345(in Chinese).
    [12] XU G D, DUAN W Y, WU G X.Numerical simulation of water entry of a cone in free-fall motion[J].Quarterly Journal of Mechanics and Applied Mathematics, 2011, 64(3):265-285. doi: 10.1093/qjmam/hbr003
    [13] XIAO T, QIN N, LU Z, et al.Development of a smoothed particle hydrodynamics method and its application to aircraft ditching simulations[J].Aerospace Science and Technology, 2017, 66:28-43. doi: 10.1016/j.ast.2017.02.022
    [14] CHENG H, MING F R, SUN P N, et al.Towards the modeling of the ditching of a ground-effect wing ship within the framework of the SPH method[J].Applied Ocean Research, 2019, 82:370-384. doi: 10.1016/j.apor.2018.09.014
    [15] HUA C, FANG C, CHENG J.Simulation of fluid-solid interaction on water ditching of an airplane by ALE method[J].Journal of Hydrodynamics, 2011, 23(5):637-642. doi: 10.1016/S1001-6058(10)60159-X
    [16] STRECKWALL H, LINDENAU O, BENSCH L.Aircraft ditching:A free surface/free motion problem[J].Archives of Civil and Mechanical Engineering, 2007, 7(3):177-190. doi: 10.1016/S1644-9665(12)60025-9
    [17] GUO B D, LIU P Q, QU Q L, et al.Effect of pitch angle on initial stage of a transport airplane ditching[J].Chinese Journal of Aeronautics, 2013, 26(1):17-26. doi: 10.1016/j.cja.2012.12.024
    [18] QU Q L, HU M X, GUO H, et al.Study of ditching characteristics of transport aircraft by global moving mesh method[J].Journal of Aircraft, 2015, 52(5):1550-1558. doi: 10.2514/1.C032993
    [19] HIRT C W, NICHOLS B D.Volume of fluid (VOF) method for the dynamics of free boundaries[J].Journal of Computational Physics, 1981, 39(1):201-225. doi: 10.1016/0021-9991(81)90145-5
    [20] MUZAFERIJA S.A two-fluid Navier-Stokes solver to simulate water entry[C]//Proceedings of 22nd Symposium on Naval Architecture.Washington, D.C.: National Academy Press, 1999: 638-651.
  • 加载中
图(27)
计量
  • 文章访问数:  632
  • HTML全文浏览量:  107
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-25
  • 录用日期:  2020-12-21
  • 网络出版日期:  2021-05-20

目录

    /

    返回文章
    返回
    常见问答