留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有效中转时间预测的不正常航班恢复技术

何坚 果红艳 姚远 卞磊 唐红武 王殿胜

何坚, 果红艳, 姚远, 等 . 基于有效中转时间预测的不正常航班恢复技术[J]. 北京航空航天大学学报, 2022, 48(3): 384-393. doi: 10.13700/j.bh.1001-5965.2020.0559
引用本文: 何坚, 果红艳, 姚远, 等 . 基于有效中转时间预测的不正常航班恢复技术[J]. 北京航空航天大学学报, 2022, 48(3): 384-393. doi: 10.13700/j.bh.1001-5965.2020.0559
HE Jian, GUO Hongyan, YAO Yuan, et al. Irregular flight recovery technique based on accurate transit time prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 384-393. doi: 10.13700/j.bh.1001-5965.2020.0559(in Chinese)
Citation: HE Jian, GUO Hongyan, YAO Yuan, et al. Irregular flight recovery technique based on accurate transit time prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 384-393. doi: 10.13700/j.bh.1001-5965.2020.0559(in Chinese)

基于有效中转时间预测的不正常航班恢复技术

doi: 10.13700/j.bh.1001-5965.2020.0559
基金项目: 

国家重点研发计划 2020YFB2104400

国家自然科学基金 61602016

国家自然科学基金 U2033205

详细信息
    通讯作者:

    卞磊, E-mail: bianlei@pku.edu.cn

  • 中图分类号: N945.1

Irregular flight recovery technique based on accurate transit time prediction

Funds: 

National Key R & D Program of China 2020YFB2104400

National Natural Science Foundation of China 61602016

National Natural Science Foundation of China U2033205

More Information
  • 摘要:

    不正常航班恢复问题研究通常基于固定航班中转时间,忽视了实际航班中转时间的改变对航班恢复带来的影响。对此,依据全国235个机场的全部运营航班数据抽取机场-航班特征,构建了基于LightGBM的航班中转时间预测模型,预测航班的有效中转时间,数值结果显示,航班中转时间预测模型预测的均方根误差为6.783 min。构造了基于有效中转时间的不正常航班恢复模型,并针对性地设计了求解该模型的列向量生成算法,构造的模型通过取消、改变计划时间、更换飞机等方式,分别在最小化航班延误时间、取消个数、换飞机个数的目标下,解决机场流量下降、机场关闭、飞机维修等不正常条件下的航班恢复问题。通过航空公司实际运行数据测试证明,基于有效中转时间预测的不正常航班恢复技术有效,在大规模航班恢复的情况下,可以将总延误时间减少34.2%。将列向量生成算法与时空网络算法的结果进行对比,所提出的恢复方法能降低航班恢复代价。

     

  • 图 1  离港航班个数与月份关系

    Figure 1.  Relationship between the number of departure flights and the months

    图 2  2018年5月2日离港航班个数与时间关系

    Figure 2.  Relationship between the number of departure flights and the time on May 2, 2018

    图 3  列向量生成算法解决不正常航班恢复问题的流程

    Figure 3.  Flowchart for solving irregular flight recovery problems by column vector generation algorithm

    图 4  列向量生成算法主问题的流程

    Figure 4.  Flowchart of main problem using column vector generation algorithm

    图 5  列向量生成算法子问题的流程

    Figure 5.  Flowchart of subproblem using column vector generation algorithm

    图 6  列向量生成算法与时空网络模型运行时间对比

    Figure 6.  Comparison of operation time between column vector generation algorithm and spatio-temporal network model

    表  1  数据结构特征

    Table  1.   Data structure characteristics

    特征 类型 例值
    航班号 String CA1234
    日期 String 2018-05-02
    出发机场 String HGH
    到达机场 String SZX
    飞机注册号 String B2345
    机型 String 319/131
    预计离港时间 String 2018-05-02 18:50
    前序到达时间 String 2018-05-02 18:05
    String 弱雪
    String 尘卷风
    String 小雨
    String 浮尘
    String 轻雾
    下载: 导出CSV

    表  2  不同模型航班中转时间性能对比

    Table  2.   Performance comparison about different models' flight transit time

    模型 RMSE/min MAE/min 训练时间/s
    LightGBM 6.783 5.467 66
    GBDT 7.197 5.948 77
    下载: 导出CSV

    表  3  算例基本参数

    Table  3.   Basic parameters of calculation examples

    算例 航班个数 飞机个数 飞机故障个数 机场个数 机场关闭个数
    F50 50 19 0 24 0
    F100 100 37 1 40 0
    F200 200 71 0 63 1
    F400 400 144 3 83 0
    F800 800 305 1 143 0
    下载: 导出CSV

    表  4  算例成本参数

    Table  4.   Cost parameters of calculation examples

    算例 取消成本 延误成本 换飞机成本 机场的飞机不平衡成本
    F50 800 1 5 1 000
    F100 500 1 5 1 000
    F200 800 1 10 1 000
    F400 500 1 10 1 000
    F800 500 1 10 800
    下载: 导出CSV

    表  5  模型A的计算结果

    Table  5.   Calculation results of Model A

    算例 取消个数 总延误时间/min 换飞机个数 飞机不平衡个数 成本 模型运算时间/s
    F50 0 545 2 0 555 6
    F100 0 1 283 3 0 1 298 28
    F200 0 2 895 10 0 2 995 66
    F400 1 5 047 30 0 5 847 248
    F800 0 10 358 29 0 10 648 760
    下载: 导出CSV

    表  6  模型B的计算结果

    Table  6.   Calculation results of Model B

    算例 取消个数 总延误时间/min 换飞机个数 飞机不平衡个数 成本 模型运算时间/s
    F50 0 423 7 0 458 2
    F100 0 1 061 16 0 1 141 7
    F200 0 2 376 29 0 2 666 22
    F400 1 4 877 30 0 5 677 90
    F800 1 10 157 30 0 10 957 288
    下载: 导出CSV

    表  7  模型C的计算结果

    Table  7.   Calculation results of Model C

    算例 取消个数 总延误时间/min 换飞机个数 飞机不平衡个数 成本 模型运算时间/s
    F50 0 362 2 0 372 6
    F100 0 755 3 0 770 29
    F200 0 1 941 2 0 1 961 80
    F400 1 3 265 25 0 4 015 273
    F800 0 6 814 19 0 7 004 870
    下载: 导出CSV

    表  8  模型D的计算结果

    Table  8.   Calculation results of Model D

    算例 取消个数 总延误时间/min 换飞机个数 飞机不平衡个数 成本 模型运算时间/s
    F50 0 269 7 0 304 2
    F100 0 629 13 0 694 7
    F200 0 1 504 21 0 1 714 20
    F400 1 3 163 30 0 3 963 92
    F800 0 6 680 30 0 6 980 237
    下载: 导出CSV

    表  9  算例F800的航班中转时间分布

    Table  9.   Flight transit time distribution of scenario F800

    固定中转时间/min 能够完成中转任务的航班比例/%
    30 0
    40 0.81
    60 36.04
    75 63.15
    下载: 导出CSV

    表  10  基于模型D的优化器实验结果

    Table  10.   Experimental results of optimizer based on Model D

    算例 LP IP 最优间隔比例/%
    F50 304.00 304 0
    F100 694.00 694 0
    F200 1 714.00 1 714 0
    F400 3 960.67 3 963 0.059
    F800 6 980.00 6 980 0
    下载: 导出CSV
  • [1] 赵秀丽, 朱金福, 郭梅. 不正常航班延误调度型及算法[J]. 系统工程理论与实践, 2008, 28(4): 2-4. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL200804018.htm

    ZHAO X L, ZHU J F, GUO M. Study on modelling and algorithm of irregular flight delay operation[J]. Systems Engineering-Theory & Practice, 2008, 28(4): 2-4(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL200804018.htm
    [2] LIANG Z, XIAO F, QIAN X, et al. A column generation-based heuristic for aircraft recovery problem with airport capacity constraints and maintenance flexibility[J]. Transportation Research Part B: Methodological, 2018, 113: 70-90. doi: 10.1016/j.trb.2018.05.007
    [3] YU G, BARD J F, ARGUELLO M F. Optimizing aircraft routings in response to groundings and delays[J]. ⅡE Transactions, 2001, 33(10): 931-947.
    [4] 乐美龙, 王婷婷, 吴聪聪. 基于改进的GRASP算法的飞机优化恢复研究[J]. 江苏科技大学学报(自然科学版), 2013, 27(2): 166-170. https://www.cnki.com.cn/Article/CJFDTOTAL-HDCB201302013.htm

    LE M L, WANG T T, WU C C. Study on aircrafts optimal recovery based on improved GRASP algorithm[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2013, 27(2): 166-170(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDCB201302013.htm
    [5] KE G, MENG Q, WANG T, et al. A communication-efficient parallel algorithm for decision tree[C]//Advances in Neural Information Processing Systems, 2016: 1279-1287.
    [6] TEODOROVIĆ D, GUBERINIĆ S. Optimal dispatching strategy on an airline network after a schedule perturbation[J]. European Journal of Operational Research, 1984, 15(2): 178-182. doi: 10.1016/0377-2217(84)90207-8
    [7] JARRAH A I, YU G, KRISHNAMURTHY N, et al. A decision support framework for airline flight cancellations and delays[J]. Transportation Science, 1993, 27(3): 266-280. doi: 10.1287/trsc.27.3.266
    [8] YAN S, LIN C G. Airline scheduling for the temporary closure of airports[J]. Transportation Science, 1997, 31(1): 72-82. doi: 10.1287/trsc.31.1.72
    [9] CAO J M, KANAFANI A. Real-time decision support for integration of airline flight cancellations and delays. Part I: Mathematical formulation[J]. Transportation Planning and Technology, 1997, 20(3): 183-199. doi: 10.1080/03081069708717588
    [10] CAO J M, KANAFANI A. Real-time decision support for integration of airline flight cancellations and delays. Part Ⅱ: Algorithm and computational experiments[J]. Transportation Planning and Technology, 1997, 20(3): 201-217. doi: 10.1080/03081069708717589
    [11] THENGVALL B G, YU G, BARD J F. Multiple fleet aircraft schedule recovery following hub closures[J]. Transportation Research Part A: Policy and Practice, 2001, 35(4): 289-308. doi: 10.1016/S0965-8564(99)00059-2
    [12] THENGVALL B G, BARD J F, YU G. A bundle algorithm approach for the aircraft schedule recovery problem during hub closures[J]. Transportation Science, 2003, 37(4): 392-407. doi: 10.1287/trsc.37.4.392.23281
    [13] 白凤, 朱金福, 高强. 基于列生成法的不正常航班调度[J]. 系统工程理论与实践, 2010, 30(11): 2036-2045. doi: 10.12011/1000-6788(2010)11-2036

    BAI F, ZHU J F, GAO Q. Disrupted airline schedules dispatching based on column generation methods[J]. Systems Engineering-Theory & Practice, 2010, 30(11): 2036-2045(in Chinese). doi: 10.12011/1000-6788(2010)11-2036
    [14] 汪瑜, 孙宏. 基于航班时空网络模型的网络型机队随机规划方法[J]. 数学的实践与认识, 2018, 48(6): 58-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201806007.htm

    WANG Y, SUN H. A network-type fleet stochastic planning methodology based on flight time space network model[J]. Mathematics in Practice and Theory, 2018, 48(6): 58-68(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201806007.htm
    [15] 田倩南, 李昆鹏, 李文莉, 等. 受扰航班恢复问题的优化方案研究[J]. 管理学报, 2018, 15(10): 1081-1088. doi: 10.3969/j.issn.1672-884x.2018.10.017

    TIAN Q N, LI K P, LI W L, et al. The research on optimization of disrupted flights recovery problem[J]. Chinese Journal of Management, 2018, 15(10): 1081-1088(in Chinese). doi: 10.3969/j.issn.1672-884x.2018.10.017
    [16] QIANG H A O, WEI F A N. Flight recovery model based on consideration of passenger satisfaction robustness[J]. Modern Electronics Technique, 2018, 2018(18): 32.
    [17] 唐小卫, 高强, 朱金福. 不正常航班恢复模型的贪婪模拟退火算法研究[J]. 预测, 2010, 29(1): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-YUCE201001010.htm

    TANG X W, GAO Q, ZHU J F. Research on greedy simulated annealing algorithm of irregular flight schedule recovery model[J]. Forecasting, 2010, 29(1): 66-70(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YUCE201001010.htm
    [18] 吴刚, 严俊. 不正常航班恢复的一种改进的列生成算法[J]. 南京航空航天大学学报, 2014, 46(2): 329-334. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201402024.htm

    WU G, YAN J. Improved column generation algorithm for disrupted airline schedules recovery[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(2): 329-334(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201402024.htm
    [19] 乐美龙, 王婷婷, 吴聪聪. 多机型不正常航班恢复的时空网络模型[J]. 四川大学学报(自然科学版), 2013, 50(3): 477-483. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201303010.htm

    LE M L, WANG T T, WU C C. The time-band model for recovery of multi-type aircrafts' disrupted flights[J]. Journal of Sichuan University(Natural Science Edition), 2013, 50(3): 477-483(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201303010.htm
    [20] FRIEDMAN J H. Greedy function approximation: A gradient boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189-1232.
    [21] KE G, MENG Q, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing Systems, 2017, 30: 3146-3154.
    [22] 王芳杰, 王福建, 王雨晨, 等. 基于LightGBM算法的公交行程时间预测[J]. 交通运输系统工程与信息, 2019, 19(2): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201902017.htm

    WANG F J, WANG F J, WANG Y C, et al. Bus travel time prediction based on light gradient boosting machine algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 116-121(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201902017.htm
    [23] 顾桐, 许国良, 李万林, 等. 基于集成LightGBM和贝叶斯优化策略的房价智能评估模型[J]. 计算机应用, 2020, 40(9): 2762-2767. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202009043.htm

    GU T, XU G L, LI W L, et al. Intelligent house price evaluation model based on ensemble LightGBM and Bayesian optimization strategy[J]. Journal of Computer Applications, 2020, 40(9): 2762-2767(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202009043.htm
    [24] ZHANG L, YANG H, WANG K, et al. Measuring imported case risk of COVID-19 from inbound international flights-A case study on China[J]. Journal of Air Transport Management, 2020, 89: 101918.
  • 加载中
图(6) / 表(10)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  83
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 录用日期:  2020-12-18
  • 网络出版日期:  2022-03-20

目录

    /

    返回文章
    返回
    常见问答