留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲射流对环量控制翼型气动性能的影响

雷玉昌 张登成 张艳华 苏光旭

雷玉昌, 张登成, 张艳华, 等 . 脉冲射流对环量控制翼型气动性能的影响[J]. 北京航空航天大学学报, 2022, 48(3): 485-494. doi: 10.13700/j.bh.1001-5965.2020.0560
引用本文: 雷玉昌, 张登成, 张艳华, 等 . 脉冲射流对环量控制翼型气动性能的影响[J]. 北京航空航天大学学报, 2022, 48(3): 485-494. doi: 10.13700/j.bh.1001-5965.2020.0560
LEI Yuchang, ZHANG Dengcheng, ZHANG Yanhua, et al. Effect of pulsed jet on aerodynamic performance of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 485-494. doi: 10.13700/j.bh.1001-5965.2020.0560(in Chinese)
Citation: LEI Yuchang, ZHANG Dengcheng, ZHANG Yanhua, et al. Effect of pulsed jet on aerodynamic performance of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 485-494. doi: 10.13700/j.bh.1001-5965.2020.0560(in Chinese)

脉冲射流对环量控制翼型气动性能的影响

doi: 10.13700/j.bh.1001-5965.2020.0560
详细信息
    通讯作者:

    张登成, E-mail: dengcheng_zhang@163.com

  • 中图分类号: V211.3; V224+.5

Effect of pulsed jet on aerodynamic performance of circulation control airfoil

More Information
  • 摘要:

    定常射流在大迎角下气动性能较差,借助脉冲射流能够有效改善大迎角下的气动性能,并减少射流所需质量流量。采用非定常数值模拟的方法进行了脉冲射流作用下的环量控制翼型气动特性计算和流场分析。总结了占空比和频率分别对时均升力和升力脉动幅值的影响趋势;分析了不同迎角下的脉冲射流流动机理;进一步指出了射流动量系数的影响规律,并借助脉冲射流和定常射流的叠加效应有效缓解了升力脉动现象。结果表明:低占空比、同等升力系数下,脉冲射流可大幅度减小质量流量,但升力脉动幅值较大;小迎角下随频率增大,升力系数先增大后减小,但整体变化幅度不大,大迎角下随频率增大,升力系数持续性增大;脉冲射流能够推迟失速迎角,扩宽环量控制技术的可用迎角,并且随动量系数增大,这种优势更加明显;借助脉冲射流与定常射流的叠加效应,能够有效缓解脉冲射流作用下的升力脉动现象,达到飞行使用条件。

     

  • 图 1  翼型相关参数示意图

    Figure 1.  Sechematic map of airfoil shape parameters

    图 2  翼型计算网格划分

    Figure 2.  Airfoil's computational grid generation

    图 3  不同时间步长下的时均升阻力系数

    Figure 3.  Time-averaged lift and drag coefficient at different time step sizes

    图 4  升力系数仿真与实验对比

    Figure 4.  Comparison of lift coefficient between simulation and experiment

    图 5  35 Hz脉冲射流下时均压力系数分布

    Figure 5.  Time-averaged pressure coefficient distribution under 35 Hz pulsed jet

    图 6  不同质量流量下的时均升力系数对比

    Figure 6.  Comparison of lift coefficient at different mass flow rates

    图 7  35 Hz脉冲射流下时均升力系数时域曲线对比

    Figure 7.  Comparison of lift coefficient time-domain curves at 35 Hz pulsed jet

    图 8  不同频率下的升力系数增量和脉动幅值对比

    Figure 8.  Comparison of lift coefficient and pulsation amplitude at different frequencies

    图 9  翼型涡量图和流线图

    Figure 9.  Airfoil vorticity and streamlines

    图 10  200 Hz脉冲射流下时均升力系数时域曲线对比

    Figure 10.  Comparison of lift coefficient time-domain curves at 200 Hz pulsed jet

    图 11  升力系数对比

    Figure 11.  Comparison of lift coefficient

    图 12  气动品质因子对比曲线

    Figure 12.  Aerodynamic quality factor comparison

    图 13  不同rsp下的时均升力系数与脉动幅值对比曲线

    Figure 13.  Comparison of lift coefficient and pulsation amplitude at different rsp

    图 14  翼型后缘流线图

    Figure 14.  Airfoil trailing edge streamlines

    表  1  不同占空比对应的射流速度

    Table  1.   Jet velocity corresponding to different duty cycle

    DC/% Vjet.max/(m·s-1) Vjet.min/(m·s-1)
    30 173.5 0
    50 134.4 0
    70 113.6 0
    90 100 0
    下载: 导出CSV
  • [1] KING R. Active flow control[C]//Active Flow Control 2006. Berlin: Springer, 2006.
    [2] ENGLAR R J. Circulation control for high lift and drag generation on STOL aircraft[J]. Journal of Aircraft, 1975, 12(5): 457-463. doi: 10.2514/3.59824
    [3] JOLSLIN R D, JONES G S. Applications of circulation control technology[M]. Reston: AIAA, 2006: 1-614.
    [4] ENGLAR R J, HUSON G G. Development of advanced circulation control wing high-lift airfoils[J]. Journal of Aircraft, 1984, 21(7): 476-483. doi: 10.2514/3.44996
    [5] SHAH N, WONG C, KONTIS K. Active flow control using steady and pulsed blowing at subsonic speeds[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 742.
    [6] SEIFERT A. Closed-loop active flow control systems: Actuators[C]//Active Flow Control 2007. Berlin: Springer, 2007: 85-102.
    [7] YAROS S F, SEXSTONE M G, HUEBNER L D, et al. Synergistic airframe-propulsion interactions and integrations[R]. Hampton: NASA Langley Research Centre, 1998: 1-122.
    [8] JONES G, VIKEN S, WASHBURN A, et al. An active flow circulation controlled flap concept for general aviation aircraft applications[C]//1st Flow Control Conference. Reston: AIAA, 2002: 3157.
    [9] KANISTRAS K, SAKA P C, VALAVANIS K P, et al. Wind tunnel investigation of a circulation control wing with dual-radius flaps[J]. Journal of Aircraft, 2018, 55(4): 1731-1741. doi: 10.2514/1.C034208
    [10] JONES G S, LIN J C, ALLEN B G, et al. Overview of CFD validation experiments for circulation control applications at NASA[C]//International Powered Lift Conference. London: Royal Aeronautical Society, 2008: 22-24.
    [11] WARSOP C, CROWTHER W. NATO AVT-239 task group: Flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 0282.
    [12] 朱自强, 吴宗成. 环量控制技术研究[J]. 航空学报, 2016, 37(2): 411-428. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201602006.htm

    ZHU Z Q, WU Z C. Study of the circulation control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 411-428(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201602006.htm
    [13] 张艳华, 张登成, 胡孟权, 等. 环量控制对翼型气动特性的作用机理[J]. 空军工程大学学报, 2015, 16(1): 10-13. doi: 10.3969/j.issn.1009-3516.2015.01.003

    ZHANG Y H, ZHANG D C, HU M Q, et al. Study on aerodynamic mechanism of circulation control airfoil[J]. Journal of Air Force Engineering University, 2015, 16(1): 10-13(in Chinese). doi: 10.3969/j.issn.1009-3516.2015.01.003
    [14] 雷玉昌, 张登成, 张艳华, 等. 超临界翼型的双射流环量控制研究[J]. 飞行力学, 2020, 38(4): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202004004.htm

    LEI Y C, ZHANG D C, ZHANG Y H, et al. Circulation control of double jet flow on supercritical airfoil[J]. Flight Dynamics, 2020, 38(4): 16-21(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202004004.htm
    [15] SHI Z W, ZHU J C, DAI X X, et al. Aerodynamic characteristics and flight testing of a UAV without control surfaces based on circulation control[J]. Journal of Aerospace Engineering, 2019, 32(1): 04018134. doi: 10.1061/(ASCE)AS.1943-5525.0000947
    [16] 李家春, 杨卫东. 直升机环量控制尾梁截面形状分析[J]. 空气动力学学报, 2015, 33(2): 239-245. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201502014.htm

    LI J C, YANG W D. An analysis of cross section of helicopter tail boom for NOTARTM system[J]. Acta Aerodynamica Sinica, 2015, 33(2): 239-245(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201502014.htm
    [17] 姜裕标, 张刘, 黄勇, 等. 内吹式襟翼环量控制翼型升力响应特性[J]. 航空学报, 2018, 39(7): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201807004.htm

    JIANG Y B, ZHANG L, HUANG Y, et al. Lift response characteristics of a circulation control airfoil with internally blown flap[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 64-72(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201807004.htm
    [18] JONES G, ENGLAR R. Advances in pneumatic controlled high lift systems through pulsed blowing[C]//21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: 3411.
    [19] 王万波, 姜裕标, 黄勇, 等. 脉冲吹气对无缝襟翼翼型气动性能的影响[J]. 航空学报, 2018, 39(11): 37-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201811003.htm

    WANG W B, JIANG Y B, HUANG Y, et al. Influence of pulse blowing on slotless flap airfoil aerodynamic characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 37-48 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201811003.htm
    [20] WARSOP C, CROWTHER W J. Fluidic flow control effectors for flight control[J]. AIAA Journal, 2018, 56(10): 3808-3824. doi: 10.2514/1.J056787
    [21] SWANSON R C, RUMSEY C L. Computation of circulation control airfoil flows[J]. Computers and Fluids, 2009, 38(10): 1925-1942. doi: 10.1016/j.compfluid.2009.05.002
    [22] SWANSON R C, RUMSEY C L, ANDERS S G. Progress towards computational method for circulation control airfoils[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005: 14527-14553.
    [23] LIU Y, SANKAR L, ENGLAR R, et al. Numerical simulations of the steady and unsteady aerodynamic characteristics of a circulation control wing airfoil[C]//39th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001: 704.
    [24] LEFEBVRE A, DANO B, BARTOW W B, et al. Performance and energy expenditure of coflow jet airfoil with variation of Mach number[J]. Journal of Aircraft, 2016, 53(6): 1757-1767. doi: 10.2514/1.C033113
    [25] 叶坤, 叶正寅, 武洁, 等. 基于DMD方法的翼型大迎角失速流动稳定性研究[J]. 空气动力学学报, 2018, 36(3): 518-528. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201803017.htm

    YE K, YE Z Y, WU J, et al. Stability of stalled flow field at high angle of attack based on DMD method[J]. Acta Aerodynamica Sinica, 2018, 36(3): 518-528(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201803017.htm
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  9
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-28
  • 录用日期:  2020-12-11
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回
    常见问答