留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有限时间引导律的欠驱智能船舶循迹控制

冯辉 胡胜 余文曌 徐海祥

冯辉, 胡胜, 余文曌, 等 . 基于有限时间引导律的欠驱智能船舶循迹控制[J]. 北京航空航天大学学报, 2022, 48(3): 394-400. doi: 10.13700/j.bh.1001-5965.2020.0561
引用本文: 冯辉, 胡胜, 余文曌, 等 . 基于有限时间引导律的欠驱智能船舶循迹控制[J]. 北京航空航天大学学报, 2022, 48(3): 394-400. doi: 10.13700/j.bh.1001-5965.2020.0561
FENG Hui, HU Sheng, YU Wenzhao, et al. Finite-time line-of-sight guidance law path following control for underactuated intelligent ships[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 394-400. doi: 10.13700/j.bh.1001-5965.2020.0561(in Chinese)
Citation: FENG Hui, HU Sheng, YU Wenzhao, et al. Finite-time line-of-sight guidance law path following control for underactuated intelligent ships[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 394-400. doi: 10.13700/j.bh.1001-5965.2020.0561(in Chinese)

基于有限时间引导律的欠驱智能船舶循迹控制

doi: 10.13700/j.bh.1001-5965.2020.0561
基金项目: 

国家自然科学基金 51879210

国家自然科学基金 51979210

中央高校基本科研业务费专项资金 2019Ⅲ040

中央高校基本科研业务费专项资金 2019Ⅲ132CG

详细信息
    通讯作者:

    余文曌, E-mail:wzyu@whut.edu.cn

  • 中图分类号: TP273

Finite-time line-of-sight guidance law path following control for underactuated intelligent ships

Funds: 

National Natural Science Foundation of China 51879210

National Natural Science Foundation of China 51979210

the Fundamental Research Funds for the Central Universities 2019Ⅲ040

the Fundamental Research Funds for the Central Universities 2019Ⅲ132CG

More Information
  • 摘要:

    针对欠驱智能船舶在执行循迹任务时,受路径曲率和环境力干扰影响导致横向偏差增大的问题,对欠驱智能船舶的引导策略进行了研究。提出了一种有限时间收敛的自适应引导律,并基于该引导律实现了欠驱智能船舶循迹控制,使循迹过程中的横向偏差在有限时间内收敛至零。相比于传统积分引导律,所提方法的控制参数可以根据横向偏差的变化进行自适应调整,更快地引导欠驱智能船舶进行直线和曲线循迹。通过仿真对比验证了所提方法的有效性和先进性。

     

  • 图 1  LOS引导律原理

    Figure 1.  Geometrical illustration of LOS guidance law

    图 2  直线循迹曲线

    Figure 2.  Curves of straight-line path following

    图 3  直线循迹横向偏差曲线

    Figure 3.  Curves of straight-line path following cross-track error

    图 4  直线循迹引导律比例系数变化曲线

    Figure 4.  Curve of straight-line path following guidance law proportional coefficient

    图 5  直线循迹艏向角变化曲线

    Figure 5.  Curves of straight-line path following heading angle

    图 6  曲线循迹曲线

    Figure 6.  Curves of curved-line path following

    图 7  曲线循迹横向偏差曲线

    Figure 7.  Curves of curved-line path following cross-track error

    图 8  曲线循迹引导律比例系数变化曲线

    Figure 8.  Curve of curved-line path following guidance law proportional coefficient

    图 9  曲线循迹艏向角变化曲线

    Figure 9.  Curves of curved-line path following heading angle

    表  1  直线循迹仿真条件

    Table  1.   Simulation conditions of straight-line path following

    参数 数值
    初始位置 [10 m, -20 m, π/4]T
    海流合速度Uc 0.1 m/s
    路径点坐标 (0 m, 0 m),(100 m, 100 m)
    采样周期 0.5 s
    前向距离Δ 3.0 m
    流向角 -π/4
    期望纵向航速 0.3 m/s
    船长 2.3 m
    下载: 导出CSV

    表  2  曲线循迹仿真条件

    Table  2.   Simulation conditions of curved-line path following

    参数 数值
    初始位置 [0 m, 0 m, 0 m]T
    路径点坐标 (0 m, 0 m), (6 m, 30 m), (30 m, 30 m), (30 m, 0 m), (60 m, 0 m)
    海流合速度Uc 0.02 m/s
    转弯圆弧半径 [6 m, 6 m, 6 m]T
    船长 2.3 m
    前向距离Δ 1.15 m
    期望纵向航速 0.1 m/s
    流向角 π/4
    采样周期 0.5 s
    下载: 导出CSV
  • [1] 中国船级社. 智能船舶规范[S]. 北京: 中国船级社, 2020.

    China Classification Society. Rules for intelligent ships[S]. Beijing: China Classification Society, 2020(in Chinese).
    [2] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. New York: John Wiley and Sons Ltd, 2011: 241-242.
    [3] ENCARNAÇÃO P, PASCOAL A, ARCAK M. Path following for autonomous marine craft[J]. IFAC Proceedings Volumes, 2000, 33(21): 117-122. doi: 10.1016/S1474-6670(17)37061-1
    [4] FOSSEN T I, BREIVIK M, SKJETNE R. Line-of-sight path following of under-actuated marine craft[J]. IFAC Proceedings Volumes, 2003, 36(21): 244-249.
    [5] HAC A, SIMPSON M D. Estimation of vehicle sideslip angle and yaw rate[C]//Proceeding of Sea World Congress, 2000: 1032-1038.
    [6] BEVLY D M, SHERIDAN R, GERDES C. Interating INS sensors with GPS velocity measurements for continuous estimations of vehicle sideslip and tire cornering stiffness[C]//Proceeding of American Control Conference, 2001: 25-30.
    [7] BØRHAUG E, PAVLOV A, PETTERSEN K Y. Integral LOS control for path following of underactuated marine surface vessels in the presence of constant ocean currents[C]//Proceeding of 47th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2008: 4984-4991.
    [8] LEKKAS A M. Guidance and path-planning systems for autonomous vehicles[D]. Gløshaugen: Norwegian University of Science and Technology, 2014.
    [9] 瞿洋, 徐海祥, 余文曌, 等. 基于ILOS的欠驱船舶循迹控制[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(5): 834-838. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201605015.htm

    QU Y, XU H X, YU W Z, et al. Integral line-of-sight guidance for path following of underactuated marine surface vessels[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2016, 40(5): 834-838(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201605015.htm
    [10] LEKKAS A M, FOSSEN T I. Integral LOS path following for curved paths based on a monotone cubic Hermite spline parametrization[J]. IEEE Transaction on Control System Technology, 2014, 22(6): 2287-2301. doi: 10.1109/TCST.2014.2306774
    [11] 陈霄, 刘忠, 张建强, 等. 基于改进积分视线导引策略的欠驱动水面无人艇路径跟踪[J]. 北京航空航天大学学报, 2018, 44(3): 489-499. doi: 10.13700/j.bh.1001-5965.2017.0192

    CHEN X, LIU Z, ZHANG J Q, et al. Path following of underactuated USV based on modified integral line-of-sight guidance strategies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 489-499(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0192
    [12] FOSSEN T I, PETTERSEN K Y, GALEAZZI R. Line-of-sight path following for Dubins paths with adaptive sideslip compensation of drift forces[J]. IEEE Transaction on Control System Technology, 2015, 23(2): 820-827. doi: 10.1109/TCST.2014.2338354
    [13] FOSSEN T I, LEKKAS A M. Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents[J]. International Journal of Adaptive Control and Signal Processing, 2015, 31(4): 445-463.
    [14] LIU L, WANG D, PENG Z. ESO-based line-of-sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation[J]. IEEE Journal of Oceanic Engineering, 2017, 42(2): 477-487. doi: 10.1109/JOE.2016.2569218
    [15] BHAT S, BERNSTAIN D S. Lyapunov analysis of finite-time differential equations[C]//Proceeding of American Control Conference, 1995: 1831-1832.
    [16] WANG N, SUN Z, YIN J, et al. Finite-time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances[J]. IEEE Access, 2018, 6: 14059-14070.
    [17] WANG L, XU C K, CHENG J H. Robust output path-following control of marine surface vessels with finite-time LOS guidance[J]. Journal of Marine Science and Engineering, 2020, 8(4): 275. doi: 10.3390/jmse8040275
    [18] 余亚磊. 无人运输船舶路径跟踪自主智能控制[D]. 大连: 大连海事大学, 2019: 67-69.

    YU Y L. Autonomous intelligent control for path following of unmanned surface vehicles[D]. Dalian: Dalian Maritime University, 2019: 67-69(in Chinese).
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  9
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-29
  • 录用日期:  2021-03-05
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回
    常见问答