留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2在RP5航空燃油中的质扩散系数测量

李超越 冯诗愚 徐雷 王志凌

李超越, 冯诗愚, 徐雷, 等 . CO2在RP5航空燃油中的质扩散系数测量[J]. 北京航空航天大学学报, 2022, 48(3): 412-418. doi: 10.13700/j.bh.1001-5965.2020.0581
引用本文: 李超越, 冯诗愚, 徐雷, 等 . CO2在RP5航空燃油中的质扩散系数测量[J]. 北京航空航天大学学报, 2022, 48(3): 412-418. doi: 10.13700/j.bh.1001-5965.2020.0581
LI Chaoyue, FENG Shiyu, XU Lei, et al. Measurement of mass diffusion coefficient of CO2 in RP5 jet fuel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 412-418. doi: 10.13700/j.bh.1001-5965.2020.0581(in Chinese)
Citation: LI Chaoyue, FENG Shiyu, XU Lei, et al. Measurement of mass diffusion coefficient of CO2 in RP5 jet fuel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 412-418. doi: 10.13700/j.bh.1001-5965.2020.0581(in Chinese)

CO2在RP5航空燃油中的质扩散系数测量

doi: 10.13700/j.bh.1001-5965.2020.0581
基金项目: 

国家自然科学基金 U1933121

国家自然科学基金 51905242

江苏省高等学校基础科学(自然科学)研究项目 21KJD620003

金陵科技学院高层次人才科研启动基金 jit-b-202044

南京航空航天大学飞行器环境控制与生命保障工业和信息化部重点实验室项目 KLAECLS-E-201903

详细信息
    通讯作者:

    冯诗愚, E-mail: shiyuf@nuaa.edu.cn

  • 中图分类号: V312; TQ021.4

Measurement of mass diffusion coefficient of CO2 in RP5 jet fuel

Funds: 

National Natural Science Foundation of China U1933121

National Natural Science Foundation of China 51905242

Natural Science Foundation of Institutions of Higher Education of Jiangsu Province, China 21KJD620003

High-level Talent Work Start-up Fee Funded Project of the Jinling Institute of Technology of China jit-b-202044

Project of Key Laboratory of Aircraft Environment Control and Life Support, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics KLAECLS-E-201903

More Information
  • 摘要:

    根据数字全息干涉度量原理搭建了气液质扩散系数测量实验平台,设计并加工了中空不锈钢恒温扩散槽,采用自编程序进行数字图像处理,通过测量298.15 K时0.33 mol/L KCl溶液在水中的质扩散系数验证了实验系统的正确性。实验测量了常压下278.15~343.15 K温度范围内CO2在RP5航空燃油中的质扩散系数。随着温度的增加,CO2在RP5航空燃油中的质扩散系数逐渐增大。不同温度下的质扩散系数可利用Arrhenius方程模型进行拟合,而且质扩散系数理论模型计算与实验测量结果之间的相对误差均小于9.51%。在实际工程应用中,可根据拟合的Arrhenius方程对CO2在RP5航空燃油中的质扩散系数进行准确的预测,实验测量结果为燃油箱惰化系统的优化设计提供了数据支持。

     

  • 图 1  扩散过程中浓度和浓度差分布

    Figure 1.  Concentration and concentration difference distribution during diffusion process

    图 2  数字全息干涉测量系统

    Figure 2.  Digital holographic interferometry system

    图 3  恒温系统

    Figure 3.  Thermostatic system

    图 4  数字图像处理流程

    Figure 4.  Digital image processing flowchart

    图 5  CO2在RP5航空燃油扩散体系中的图像处理过程

    Figure 5.  Image processing of CO2 in RP5 jet fuel diffusion system

    图 6  扩散方向解包裹相位差分布

    Figure 6.  Unwrapped phase difference distribution in diffusion direction

    图 7  CO2在RP5航空燃油中的质扩散系数拟合

    Figure 7.  Mass diffusion coefficient fitting of CO2 in RP5 jet fuel

    图 8  质扩散系数理论计算与实验测量结果误差

    Figure 8.  Difference between theoretical calculation result and experimental measurement result of mass diffusion coefficient

    表  1  298.15 K时0.33 mol/L KCl溶液在水中质扩散系数

    Table  1.   Mass diffusion coefficient of 0.33 mol/L KCl in water at 298.15 K

    t1/s t2/s Δz/mm D/ (10-9 m2·s-1) D′/ (10-9 m2·s-1)
    900 1 800 4.259 1.817 1.811
    2 700 4.631 1.808
    3 600 4.892 1.798
    4 500 5.130 1.819
    下载: 导出CSV

    表  2  CO2在RP5航空燃油中的质扩散系数

    Table  2.   Mass diffusion coefficient of CO2 in RP5 jet fuel

    T/K t1/s t2/s D/ (10-8 m2·s-1) D′/ (10-8 m2·s-1)
    278.15 1 800 3 600 7.057 0.998 0.899
    5 400 7.360 0.913
    7 200 7.237 0.787
    283.15 1 800 3 600 7.362 1.086 1.091
    5 400 7.640 0.984
    7 200 8.947 1.203
    288.15 1 800 3 600 8.141 1.328 1.389
    5 400 9.281 1.452
    7 200 9.607 1.387
    293.15 1 800 3 600 9.154 1.679 1.766
    5 400 10.057 1.705
    7 200 11.285 1.914
    298.15 1 800 3 600 10.445 2.186 2.039
    5 400 11.196 2.113
    7 200 10.994 1.817
    303.15 1 800 3 600 12.023 2.897 2.802
    5 400 13.261 2.964
    7 200 13.014 2.545
    308.15 1 800 3 600 13.106 3.442 3.425
    5 400 14.719 3.652
    7 200 14.550 3.182
    313.15 1 800 3 600 15.410 4.759 4.458
    5 400 16.290 4.473
    7 200 16.603 4.143
    318.15 1 800 3 600 16.200 5.259 5.521
    5 400 18.023 5.476
    7 200 19.695 5.829
    323.15 1 800 3 600 17.363 6.041 6.422
    5 400 19.422 6.358
    7 200 21.374 6.866
    328.15 1 800 3 600 19.952 7.976 7.791
    5 400 22.087 8.223
    7 200 21.851 7.175
    333.15 1 800 3 600 20.417 8.352 8.509
    5 400 23.269 9.127
    7 200 23.142 8.048
    338.15 1 800 3 600 21.637 9.381 9.551
    5 400 23.399 9.229
    7 200 25.850 10.042
    343.15 1 800 3 600 23.381 10.954 11.442
    5 400 25.335 10.819
    7 200 28.902 12.554
    下载: 导出CSV
  • [1] HARRIS P A, RATCLIFFE N M. Dimensional modelling of the fuel outgassing phenomenon: Improving flammability assessment of aircraft fuel tanks[J]. The Aeronautical Journal, 2011, 115(1172): 605-614. doi: 10.1017/S0001924000006291
    [2] SHAO L, LIU W H, LI C Y, et al. Experimental comparison between aircraft fuel tank inerting processes using NEA and MIG[J]. Chinese Journal of Aeronautics, 2018, 31(7): 1515-1524. doi: 10.1016/j.cja.2018.04.016
    [3] PEI Y, SHI B. Method for analyzing the effect of projectile impact on aircraft fuel tank inerting for survivability design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(13): 2345-2355. doi: 10.1177/0954410015623573
    [4] SUMMER S M. Limiting oxygen concentration required to inert jet fuel vapors existing at reduced fuel tank pressures: DOT/FAA/AR-TN02/79[R]. Virginia: FAA, 2003.
    [5] BURNS M, CAVAGE W M, MORRISON R, et al. Evaluation of fuel tank flammability and the FAA inerting system on the NASA 747 SCA: DOT/FAA/AR-04/41[R]. Virginia: FAA, 2004.
    [6] LI C Y, FENG S Y, SHAO L, et al. Experimental study of the solubility and diffusivity of CO2 and O2 in RP-3 jet fuel[J]. Aircraft Engineering and Aerospace Technology, 2019, 91(2): 216-224. doi: 10.1108/AEAT-05-2017-0133
    [7] BURNS M, CAVAGE W M, HILL R, et al. Flight-testing of the FAA onboard inert gas generation system on an airbus A320: DOT/FAA/AR-03/58[R]. Virginia: FAA, 2004.
    [8] CAVAGE W, BOWMAN T. Modeling in-flight inert gas distribution in a 747 center wing fuel tank[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2005: 1-13.
    [9] 冯诗愚, 邵垒, 李超越, 等. 航空燃油类型对催化惰化系统性能的影响[J]. 航空学报, 2016, 37(6): 1819-1826. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201606012.htm

    FENG S Y, SHAO L, LI C Y, et al. Performance of catalytic inerting system affected by various aviation jet fuels[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1819-1826 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201606012.htm
    [10] CLARIS C. Inert gas generator and aircraft fuel tank inerting system implementing said inert gas generator: US2017/0239615A1[P]. 2017-08-24.
    [11] HAGH B F, ZHENG D, JOHNSON R W, et al. Aircraft systems and methods with integrated tank inerting and power generation: US9731834B2[P]. 2017-08-15.
    [12] KEIM M, KALLO J, FRIEDRICH K A, et al. Multifunctional fuel cell system in an aircraft environment: An investigation focusing on fuel tank inerting and water generation[J]. Aerospace Science and Technology, 2013, 29(1): 330-338. doi: 10.1016/j.ast.2013.04.004
    [13] RENOUARD-VALLET G N L, SABALLUS M, SCHMITHALS G, et al. Improving the environmental impact of civil aircraft by fuel cell technology: Concepts and technological progress[J]. Energy & Environmental Science, 2010, 3(10): 1458-1468.
    [14] ASTM. Standard test method for estimation of solubility of gases in petroleum liquids: D 2779-92[S]. Philadelphia: ASTM International, 2002: 1-5.
    [15] 李超越, 冯诗愚, 邵垒, 等. 二氧化碳在RP3航空燃油中溶解度实验测定[J]. 航空动力学报, 2017, 32(4): 949-954. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201704023.htm

    LI C Y, FENG S Y, SHAO L, et al. Experiment measurement of solubility of carbon dioxide in RP3 jet fuel[J]. Journal of Aerospace Power, 2017, 32(4): 949-954(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201704023.htm
    [16] ZHANG Y P, HYNDMAN C L, MAINI B B. Measurement of gas diffusivity in heavy oils[J]. Journal of Petroleum Science and Engineering, 2000, 25(1-2): 37-47. doi: 10.1016/S0920-4105(99)00031-5
    [17] AVGOUSTINIATIOS E S, DIONNE K E, WILSON D F, et al. Measurements of the effective diffusion coefficient of oxygen in pancreatic islets[J]. Industrial & Engineering Chemistry Research, 2007, 46(19): 6157-6163.
    [18] SMITH M J, FLOWERS T H, COWLING M J, et al. Method for the measurement of the diffusion coefficient of benzalkonium chloride[J]. Water Research, 2002, 36(6): 1423-1428. doi: 10.1016/S0043-1354(01)00356-6
    [19] 赵长伟, 马沛生, 宋小溪. 脂肪族氨基酸在水溶液中扩散系数的测定与关联[J]. 化工学报, 2003, 54(12): 1689-1695. doi: 10.3321/j.issn:0438-1157.2003.12.006

    ZHAO C W, MA P S, SONG X X. Measurement and correlation of diffusion coefficients for amino acids in aqueous solutions[J]. Journal of Chemical Industry and Engineering, 2003, 54(12): 1689-1695(in Chinese). doi: 10.3321/j.issn:0438-1157.2003.12.006
    [20] MATSUNAGA N, HORI M, NAGASHIMA A. Measurement of mutual diffusion coefficients of gases by the Taylor method: Measurements on H2-Air, H2-N2, and H2-O2 systems[J]. Heat Transfer—Asian Research, 2002, 31(3): 182-193.
    [21] RODRIGO M M, ESTESO M A, VERISSIMO L M P, et al. Diffusion and structural behaviour of the dl-2-aminobutyric acid[J]. The Journal of Chemical Thermodynamics, 2019, 135: 60-67. doi: 10.1016/j.jct.2019.03.009
    [22] 李超越, 冯诗愚, 邵垒, 等. 二氧化碳在RP3航空燃油中扩散系数实验[J]. 航空动力学报, 2017, 32(11): 2604-2608. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201711006.htm

    LI C Y, FENG S Y, SHAO L, et al. Experiment on diffusion coefficient of carbon dioxide in RP3 aviation fuel[J]. Journal of Aerospace Power, 2017, 32(11): 2604-2608(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201711006.htm
    [23] BEHZADFAR E, HATZIKIRIAKOS S G. Diffusivity of CO2 in bitumen: Pressure-decay measurements coupled with rheometry[J]. Energy & Fuels, 2014, 28(2): 1304-1311.
    [24] ZHANG S, HE M, ZHANG Y, et al. Study of the measurement for the diffusion coefficient by digital holographic interferometry[J]. Applied Optics, 2015, 54(31): 9127-9135. doi: 10.1364/AO.54.009127
    [25] AMBROSINI D, PAOLETTI D, RASHIDNIA N. Overview of diffusion measurements by optical techniques[J]. Optics and Lasers in Engineering, 2008, 46(12): 852-864. doi: 10.1016/j.optlaseng.2008.06.008
    [26] LI C Y, LIU W H, PENG X T, et al. Measurement of mass diffusion coefficients of O2 in aviation fuel through digital holographic interferometry[J]. Chinese Journal of Aeronautics, 2019, 32(5): 1184-1189. doi: 10.1016/j.cja.2019.01.012
    [27] GUO Y, HE M G, ZHONG Q, et al. Mass diffusion coefficients of dimethyl carbonate in heptane and in air at T=(278.15 to 338.15) K[J]. Journal of Chemical and Engineering Data, 2008, 53(12): 2861-2864. doi: 10.1021/je800606r
    [28] GOSTING L J. A study of the diffusion of potassium chloride in water at 25 with the gouy interference method[J]. Journal of the American Chemical Society, 1950, 10(72): 4418-4422.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  193
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 录用日期:  2020-11-28
  • 网络出版日期:  2022-03-20

目录

    /

    返回文章
    返回
    常见问答