留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于释热率分析的钝体贫油熄火过程分析

邢竞文 金捷 王方

邢竞文, 金捷, 王方等 . 基于释热率分析的钝体贫油熄火过程分析[J]. 北京航空航天大学学报, 2022, 48(3): 473-484. doi: 10.13700/j.bh.1001-5965.2020.0588
引用本文: 邢竞文, 金捷, 王方等 . 基于释热率分析的钝体贫油熄火过程分析[J]. 北京航空航天大学学报, 2022, 48(3): 473-484. doi: 10.13700/j.bh.1001-5965.2020.0588
XING Jingwen, JIN Jie, WANG Fanget al. Lean blowoff process of bluff body based on heat release rate analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 473-484. doi: 10.13700/j.bh.1001-5965.2020.0588(in Chinese)
Citation: XING Jingwen, JIN Jie, WANG Fanget al. Lean blowoff process of bluff body based on heat release rate analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 473-484. doi: 10.13700/j.bh.1001-5965.2020.0588(in Chinese)

基于释热率分析的钝体贫油熄火过程分析

doi: 10.13700/j.bh.1001-5965.2020.0588
基金项目: 

国家自然科学基金 91741125

国家科技重大专项 2017-I-0004-005

国家科技重大专项 2017-I-0001-0001

详细信息
    通讯作者:

    王方, E-mail: fwang@buaa.edu.cn

  • 中图分类号: V231.2

Lean blowoff process of bluff body based on heat release rate analysis

Funds: 

National Natural Science Foundation of China 91741125

Science and Technology Major Project 2017-I-0004-005

Science and Technology Major Project 2017-I-0001-0001

More Information
  • 摘要:

    针对锥形钝体稳定的甲烷-空气预混湍流火焰复杂的熄火过程,采用大涡模拟(LES)与输运方程概率密度函数(TPDF)湍流燃烧模型相结合的模拟方法,研究远离熄火、近熄火及熄火点的火焰和释热率(HRR)数值变化情况,定量分析熄火判据。结果表明:冷态速度模拟结果和实验的相对均方根误差在10%以内,热态误差在20%以内;释热率是否出现在OH和CH2O重叠的区域,是判断熄火的一个重要参数;远离熄火时,释热率高的区域主要沿内侧剪切层出现;近熄火工况下,释热率在流向轴上闭合,回流区下游也出现较大的释热率;熄火点工况下,较大释热率的区域在回流区下游和上游均有出现;模拟预测的熄火情况和实验PLIF结果一致;平均释热率可作为判断熄火的定量依据,即当钝体后方0.2d处内侧剪切层平均释热率与回流区平均释热率的比值小于4时,发生熄火。

     

  • 图 1  钝体燃烧器示意图[2, 20]

    Figure 1.  Schematic diagram of bluff-body combustor[2, 20]

    图 2  计算域整体示意图[9]及网格划分示意图

    Figure 2.  Schematic diagram of overall calculation domain[9] and grid division

    图 3  局部网格细节

    Figure 3.  Local grid details

    图 4  不同流向位置处冷态工况平均速度与实验数据对比

    Figure 4.  Comparison of average velocity and experimental data at different flow positions under isothermal condition

    图 5  冷态工况平均速度云图与等值线图

    Figure 5.  Contours of average velocity under isothermal condition

    图 6  不同流向位置处热态工况平均速度与实验数据对比

    Figure 6.  Comparison of average velocity and experimental data at different flow positions under thermal condition

    图 7  热态工况平均速度云图与等值线图

    Figure 7.  Contours of average velocity and isogram under thermal condition

    图 8  热态工况实验[8]PLIF和计算平均OH云图

    Figure 8.  Contours of mean OH of experiment PLIF[8] and mean OH of numerical simulation under thermal condition

    图 9  算例F1平均温度、质量分数和无量纲化释热率分布

    Figure 9.  Distribution of mean temperature, species mass fractions and dimensionless heat release rate for case F1

    图 10  算例F1平均温度云图与平均速度等值线图

    Figure 10.  Mean temperature and average velocity contour for case F1

    图 11  远离熄火工况瞬时温度与释热率云图

    Figure 11.  Contours of instantaneous temperature and heat release rate when far away from blowoff

    图 12  近熄火工况瞬时温度与释热率云图

    Figure 12.  Contours of instantaneous temperature and heat release rate when close to blowoff

    图 13  熄火工况瞬时温度与释热率云图

    Figure 13.  Contours of instantaneous temperature and heat release rate under blowoff condition

    图 14  当量比低于熄火工况瞬时温度与释热率云图

    Figure 14.  Contours of instantaneous temperature and heat release rate when equivalent ratio is lower than blowoff condition

    图 15  远离熄火工况平均释热率云图与平均速度等值线图

    Figure 15.  Mean heat release rate and average velocity contours when far away from blowoff

    图 16  近熄火工况平均释热率云图与平均速度等值线图

    Figure 16.  Mean heat release rate and average velocity contours when close to blowoff

    图 17  熄火工况平均释热率云图与平均速度等值线图

    Figure 17.  Mean heat release rate and average velocity contours under blowoff condition

    图 18  当量比低于熄火工况平均释热率云图与平均速度等值线

    Figure 18.  Mean heat release rate and average velocity contours when equivalent ratio is lower than blowoff condition

    图 19  12个算例X/d=0.2处平均释热率分布

    Figure 19.  Distribution of mean heat release rate at X/d=0.2 of twelve cases

    表  1  算例编号及边界条件

    Table  1.   Number of cases and conditions of boundary

    算例工况 算例编号 进口平均速度/ (m·s-1) 当量比φ
    冷态验证算例 A1 10.94 0
    热态验证算例 A2 10.94 0.64
    远离熄火工况 F1 19.00 0.80
    φ高于熄火工况B1 2.5% C1 19.00 0.615
    实验熄火工况 B1 19.00 0.60
    φ低于熄火工况B1 3.3% L1 19.00 0.58
    远离熄火工况 F2 27.50 0.80
    φ高于熄火工况B2 2.5% C2 27.50 0.645
    实验熄火工况 B2 27.50 0.629
    φ低于熄火工况B2 3.3% L2 27.50 0.608
    远离熄火工况 F3 44.10 0.80
    φ高于熄火工况B3 2.5% C3 44.10 0.697
    实验熄火工况 B3 44.10 0.68
    φ低于熄火工况B3 3.3% L3 44.10 0.657
    下载: 导出CSV

    表  2  其他边界条件

    Table  2.   Other boundary conditions

    边界 边界条件
    入口边界 温度T=300 K
    压力P=101 325 Pa
    甲烷-空气预混燃气
    出口边界 压力出口边界
    钝体及其他边界 绝热固壁无滑移边界
    下载: 导出CSV

    表  3  12个算例的ΔH

    Table  3.   Value of ΔH for twelve cases

    算例编号 ΔH
    F1 1 720
    F2 227
    F3 96.3
    C1 10.9
    C2 13.1
    C3 7.72
    B1 3.36
    B2 3.38
    B3 3.73
    L1 1.73
    L2 1.67
    L3 1.05
    下载: 导出CSV
  • [1] LEFEBVRE A H, BALLAL D R. Gas turbine combustion[M]. New York: McGraw-Hill, 1983: 5-10.
    [2] DAWSON J R, GORDON R L, KARIUKI J, et al. Visualization of blow-off events in bluff-body stabilized turbulent premixed flames[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1559-1566. doi: 10.1016/j.proci.2010.05.044
    [3] 陶焰明, 肖为, 江立军. 基于半经验耦合的贫熄边界预测方法[J]. 航空动力学报, 2019, 34(5): 1111-1118.

    TAO Y M, XIAO W, JIANG L J. Prediction method of lean blow-out limit based on a hybrid semi-empirical model[J]. Journal of Aerospace Power, 2019, 34(5): 1111-1118(in Chinese).
    [4] HODIZC E, DUWIG C, SZASZ R, et al. Large eddy simulation of lean blow off[C]//21st AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2013.
    [5] LEE H, LEE B K. Stability limit of a bluff-body-stabilized lean premixed turbulent flame[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
    [6] FOALE M J, GIUSTI A, MASTORAKOS E. Numerical investigation of lean blow-out of kerosene spray flames with detailed chemical models[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
    [7] PAUL P H, NAJM H N. Planar laser-induced fluorescence imaging of flame heat release rate[J]. Symposium (International) on Combustion, 1998, 27(1): 43-50. doi: 10.1016/S0082-0784(98)80388-3
    [8] KARIUKI J, DOWLUT A, YUAN R, et al. Heat release imaging in turbulent premixed methane-air flames close to blow-off[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1443-1450. doi: 10.1016/j.proci.2014.05.144
    [9] HODZIC E, JANGI M, SZASZ R Z, et al. Large eddy simulation of bluff body flames close to blow-off using an Eulerian stochastic field method[J]. Combustion and Flame, 2017, 181: 1-15. doi: 10.1016/j.combustflame.2017.03.010
    [10] JONES W P, KAKHI M. PDF modeling of finite-rate chemistry effects in turbulent nonpremixed jet flames[J]. Combustion and Flame, 1998, 115(1-2): 210-229. doi: 10.1016/S0010-2180(98)00002-9
    [11] CLAYTON D J, JONES W P. Large eddy simulation of a methane-air diffusion flame[J]. Flow, Turbulence and Combustion, 2008, 81(4): 497-521. doi: 10.1007/s10494-008-9143-5
    [12] JONES W P, LETTIERI C. Large eddy simulation of spray atomization with stochastic modeling of breakup[J]. Physics of Fluids, 2010, 22(11): 115-106.
    [13] 曾家, 金捷, 张晟, 等. 基于LES-PDF方法的双旋流模型燃烧室数值模拟[J]. 气体物理, 2019, 4(5): 52-64.

    ZENG J, JIN J, ZHANG S, et al. Numerical simulation of double swirl model combustor based on LES-PDF method[J]. Physics of Gases, 2019, 4(5): 52-64(in Chinese).
    [14] 金捷, 刘邓欢. 航空发动机燃烧室湍流两相燃烧模型发展现状[J]. 南京航空航天大学学报, 2016, 48(3): 303-309.

    JIN J, LIU D H. Development status of turbulent two-phase combustion model in aero-engine combustion chamber[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2016, 48(3): 303-309(in Chinese).
    [15] JONES W P, NAVARRO-MARTINEZ S. Large eddy simulation of auto-ignition with a subgrid probability density function method[J]. Combustion and Flame, 2007, 150(3): 170-187. doi: 10.1016/j.combustflame.2007.04.003
    [16] JONES W P, PRASAD V N. Large eddy simulation of the S andia flame series (D-F) using the Eulerian stochastic field method[J]. Combustion and Flame, 2010, 157(9): 1621-1636. doi: 10.1016/j.combustflame.2010.05.010
    [17] JONES W P, MARQUIS A J, PRASAD V N. LES of a turbulent premixed swirl burner using the Eulerian stochastic field method[J]. Combustion and Flame, 2012, 159(10): 3079-3095. doi: 10.1016/j.combustflame.2012.04.008
    [18] JABERI F A, COLUCCI P J, JAMES S, et al. Filtered mass density function for large eddy simulation of turbulent reacting flows[J]. Journal of Fluid Mechanics, 1999, 401(2): 85-121.
    [19] BALACHANDRAN R, AYOOLA B O, KAMINSKI C F, et al. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations[J]. Combustion and Flame, 2005, 143(1-2): 37-55. doi: 10.1016/j.combustflame.2005.04.009
    [20] KARIUKI J, DAWSON J R, MASTORAKOS E. Measurements in turbulent premixed bluff body flames close to blow-off[J]. Combustion and Flame, 2012, 159(8): 2589-2607. doi: 10.1016/j.combustflame.2012.01.005
    [21] SUNG C J, LAW C K, CHEN J Y. Augmented reduced mechanisms for NO emission in methane oxidation[J]. Combustion and Flame, 2001, 125(1-2): 906-919. doi: 10.1016/S0010-2180(00)00248-0
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  82
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 录用日期:  2021-02-10
  • 网络出版日期:  2022-03-20

目录

    /

    返回文章
    返回
    常见问答