留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于A2-RO电路版图填充的硬件木马抗植入方法

李宗哲 何家骥 马浩诚 刘燕江 秦国轩 赵毅强

李宗哲, 何家骥, 马浩诚, 等 . 基于A2-RO电路版图填充的硬件木马抗植入方法[J]. 北京航空航天大学学报, 2022, 48(3): 514-521. doi: 10.13700/j.bh.1001-5965.2020.0592
引用本文: 李宗哲, 何家骥, 马浩诚, 等 . 基于A2-RO电路版图填充的硬件木马抗植入方法[J]. 北京航空航天大学学报, 2022, 48(3): 514-521. doi: 10.13700/j.bh.1001-5965.2020.0592
LI Zongzhe, HE Jiaji, MA Haocheng, et al. A hardware Trojan insertion prevention method based on layout filling with A2-RO circuit[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 514-521. doi: 10.13700/j.bh.1001-5965.2020.0592(in Chinese)
Citation: LI Zongzhe, HE Jiaji, MA Haocheng, et al. A hardware Trojan insertion prevention method based on layout filling with A2-RO circuit[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 514-521. doi: 10.13700/j.bh.1001-5965.2020.0592(in Chinese)

基于A2-RO电路版图填充的硬件木马抗植入方法

doi: 10.13700/j.bh.1001-5965.2020.0592
基金项目: 

国家自然科学基金 61832018

详细信息
    通讯作者:

    赵毅强, E-mail: yq_zhao@tju.edu.cn

  • 中图分类号: TN47

A hardware Trojan insertion prevention method based on layout filling with A2-RO circuit

Funds: 

National Natural Science Foundation of China 61832018

More Information
  • 摘要:

    集成电路芯片制造过程中,攻击者可以利用电路版图中的空白区域植入硬件木马。为此,提出了一种基于A2-RO电路版图填充的硬件木马抗植入方法, 以减小电路版图中的空白区域为防护目标,设计了能够动态监测稀有节点翻转情况的功耗表征结构A2-RO,并提出了迭代填充算法及路径构建算法,通过在电路版图的空白区域中智能化地构建A2-RO电路,提高了电路的安全防护水平。基于SMIC 180 nm工艺,以ISCAS’85和ISCAS’89中的基准电路作为研究对象进行仿真验证。仿真结果表明:版图填充后,芯片的面积利用率提高至95%以上,剩余空白区域无法填充最小尺寸的标准单元。A2-RO电路移除攻击后的侧信道电流变化值为1.921 mA,有效实现了对版图空白区域的防护。版图填充的额外布线资源开销可控制在7%以内,对关键路径延时的影响在1.2%以内。

     

  • 图 1  A2-RO电路

    Figure 1.  A2-RO circuit

    图 2  A2电路波形示意图

    Figure 2.  Schematic diagram of A2 circuit waveform

    图 3  版图填充流程

    Figure 3.  Layout filling flowchart

    图 4  迭代填充算法流程

    Figure 4.  Iterative filling algorithm flowchart

    图 5  路径构建算法流程

    Figure 5.  Path construction algorithm flowchart

    图 6  版图填充

    Figure 6.  Layout filling

    图 7  布线资源开销

    Figure 7.  Routing overhead

    图 8  平均延时变化比

    Figure 8.  Mean delay change ratio

    图 9  最大延时变化比

    Figure 9.  Maximum delay change ratio

    图 10  A2-RO电路仿真波形

    Figure 10.  A2-RO circuit simulation waveform

    图 11  功耗对比

    Figure 11.  Power consumption comparison

    表  1  标准单元信息

    Table  1.   Standard cell information

    标准单元名称 高度/μm 宽度/μm
    INVX1 5.04 1.32
    INVX2 5.04 1.98
    INVX3 5.04 2.64
    INVX8 5.04 3.96
    INVX12 5.04 8.58
    AND2X1 5.04 2.64
    A2 5.04 18.48
    下载: 导出CSV

    表  2  基准电路填充结果

    Table  2.   Reference circuit filling results

    基准电路 初始面积利用率/% 最终面积利用率/% A2数目/个 逻辑单元数目/个
    c6288 84.90 95.43 4 105
    90.03 97.35 2 67
    c7552 84.97 95.71 4 104
    90.08 96.79 2 62
    s1423 85.21 95.90 2 82
    90.31 96.90 2 52
    s13207 85.90 95.88 18 618
    90.10 96.41 13 445
    下载: 导出CSV

    表  3  设计指标对比

    Table  3.   Comparison of design indicators

    文献 引脚开销/个 额外面积开销/μm2 可填充最大初始面积利用率/% 是否兼容数字电路设计流程
    文献[9] 4 0 80
    文献[10] 4 0 85
    文献[11] ≥2 >0 不受限制
    本文 0 0 90
    下载: 导出CSV
  • [1] GUIN U, ZHOU Z, SINGH A. Robust design-for-security architecture for enabling trust in IC manufacturing and test[J]. IEEE Transactions on Very Large Scale Integration Systems, 2018, 26(5): 818-830. doi: 10.1109/TVLSI.2018.2797019
    [2] YASIN M, RAJENDRAN J, SINANOGLU O, et al. On improving the security of logic locking[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(9): 1411-1424. doi: 10.1109/TCAD.2015.2511144
    [3] ZHANG J L, QU G. Recent attacks and defenses on FPGA-based systems[J]. ACM Transactions on Reconfigurable Technology and Systems, 2019, 12(3): 1-25.
    [4] HOSSEIN-TALAEE H, JAHANIAN A. Layout vulnerability reduction against Trojan insertion using security-aware white space distribution[C]//2017 IEEE Computer Society Annual Symposium on VLSI. Piscataway: IEEE Press, 2017, 1: 551-555.
    [5] SALMANI H, TEHRANIPOOR M. Vulnerability analysis of a circuit layout to hardware Trojan insertion[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1214-1225. doi: 10.1109/TIFS.2016.2520910
    [6] 黄钊, 王泉, 杨鹏飞. 硬件木马: 关键问题研究进展及新动向[J]. 计算机学报, 2019, 42(5): 67-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201905005.htm

    HUANG Z, WANG Q, YANG P F. Hardware Trojan: Research progress and new trends on key problems[J]. Chinese Journal of Computers, 2019, 42(5): 67-91(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201905005.htm
    [7] LI H, LIU Q, ZHANG J L. A survey of hardware Trojan threat and defense[J]. Integration, 2016, 55: 426-437. doi: 10.1016/j.vlsi.2016.01.004
    [8] COCCHI R P, BAUKUS J P, CHOW L W, et al. Circuit camouflage integration for hardware IP protection[C]//2014 51st ACM/EDAC/IEEE Design Automation Conference. Piscataway: IEEE Press, 2014: 1-5.
    [9] XIAO K, FORTE D, TEHRANIPOOR M. A novel built-in self-authentication technique to prevent inserting hardware Trojans[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33(12): 1778-1791. doi: 10.1109/TCAD.2014.2356453
    [10] BA P S, DUPUIS S, PALANICHAMY M, et al. Hardware trust through layout filling: A hardware Trojan prevention technique[C]//2016 IEEE Computer Society Annual Symposium on VLSI. Piscataway: IEEE Press, 2016: 254-259.
    [11] SUPON T M, SEYEDBARHAGH M, RASHIDZADEH R, et al. Hardware Trojan prevention through limiting access to the active region[C]//14th International Conference on Design & Technology of Integrated Systems in Nanoscale Era. Piscataway: IEEE Press, 2019: 1-6.
    [12] LIU Y, ZHAO Y, HE J, et al. A statistical test generation based on mutation analysis for improving the hardware Trojan detection[J]. Journal of Circuits, Systems and Computers, 2020, 29(3): 10-25.
    [13] YANG K, HICKS M, DONG Q, et al. A2: Analog malicious hardware[C]//Security & Privacy. Piscataway: IEEE Press, 2016: 18-37.
    [14] SAHA S, CHAKRABORTY R S, NUTHAKKI S S, et al. Improved test pattern generation for hardware Trojan detection using genetic algorithm and boolean satisfiability[C]//International Workshop on Cryptographic Hardware and Embedded Systems. Berlin: Springer, 2015: 577-596.
    [15] 赵永嘉, 戴树岭. 基于图像骨架和贪婪算法的无人机航路规划[J]. 北京航空航天大学学报, 2010, 36(4): 474-477. https://bhxb.buaa.edu.cn/CN/Y2010/V36/I4/474

    ZHAO Y J, DAI S L. Unmanned aircraft vehicle path planning based on image skeleton and greedy algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(4): 474-477(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2010/V36/I4/474
    [16] 李红, 张志宾. 基于快速模拟退火的组合聚类算法[J]. 北京航空航天大学学报, 2019, 45(8): 1646-1652. doi: 10.13700/j.bh.1001-5965.2018.0647

    LI H, ZHANG Z B. Ensemble clustering algorithm based on rapid simulated annealing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1646-1652(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0647
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  146
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-20
  • 录用日期:  2020-12-31
  • 网络出版日期:  2022-03-20

目录

    /

    返回文章
    返回
    常见问答