留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

捆绑火箭气动载荷分布不确定性分析

董欣心 刘莉 葛佳昊 王志

董欣心, 刘莉, 葛佳昊, 等 . 捆绑火箭气动载荷分布不确定性分析[J]. 北京航空航天大学学报, 2022, 48(3): 464-472. doi: 10.13700/j.bh.1001-5965.2020.0604
引用本文: 董欣心, 刘莉, 葛佳昊, 等 . 捆绑火箭气动载荷分布不确定性分析[J]. 北京航空航天大学学报, 2022, 48(3): 464-472. doi: 10.13700/j.bh.1001-5965.2020.0604
DONG Xinxin, LIU Li, GE Jiahao, et al. Uncertainty analysis of aerodynamic load distribution on strap-on launch vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 464-472. doi: 10.13700/j.bh.1001-5965.2020.0604(in Chinese)
Citation: DONG Xinxin, LIU Li, GE Jiahao, et al. Uncertainty analysis of aerodynamic load distribution on strap-on launch vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 464-472. doi: 10.13700/j.bh.1001-5965.2020.0604(in Chinese)

捆绑火箭气动载荷分布不确定性分析

doi: 10.13700/j.bh.1001-5965.2020.0604
详细信息
    通讯作者:

    刘莉, E-mail: liuli@bit.edu.cn

  • 中图分类号: V421.1

Uncertainty analysis of aerodynamic load distribution on strap-on launch vehicle

More Information
  • 摘要:

    针对带捆绑火箭气动载荷分布受飞行状态及本身外形参数变化影响存在波动的现象,提出了依据多项式混沌理论对捆绑火箭气动载荷分布特征进行全局灵敏度分析及不确定性量化的方法,并以两助推构型火箭为例对所提方法进行验证。首先,提出了捆绑火箭气动载荷分布不确定性分析的方法,并给出仿真分析流程。其次,以两助推构型火箭为例对所提方法进行验证,建立火箭气动外形参数化模型,验证气动特性分析结果。最后,对该模型开展影响因素灵敏度分析及载荷分布不确定性分析,得到了不同因素的影响程度,以及气动轴力和法向力的不确定性分布形式,分析了流场流动情况及气动载荷波动的主要原因。分析结果为捆绑火箭气动载荷波动控制提供了一定参考,通过定量描述气动载荷分布不确定性,可以有效降低安全系数冗余,为开展精确结构设计提供依据。

     

  • 图 1  仿真分析流程

    Figure 1.  Flowchart of simulation and analysis

    图 2  捆绑火箭参数化模型

    Figure 2.  Strap-on launch vehicle parametric model

    图 3  网格划分示意图

    Figure 3.  Schematic diagram of grid generation

    图 4  迎角方向及表面压力系数提取位置

    Figure 4.  Attack angle direction and surface pressure coefficient extraction location

    图 5  表面压力系数分布对比

    Figure 5.  Comparison of surface pressure coefficient distribution

    图 6  轴向x及法向力不确定性分布

    Figure 6.  Uncertainty distribution of axial force and normal force

    图 7  不确定性因素Sobol灵敏度指数

    Figure 7.  Sobol sensitivity indices of uncertainty factors

    图 8  不同工况下表面压力系数分布情况对比

    Figure 8.  Comparison of pressure coefficient distribution at different conditions

    图 9  马赫数及表面压力系数云图

    Figure 9.  Contour of Mach number and surface pressure coefficient

    表  1  外形参数数值

    Table  1.   Values of shape parameters

    参数 数值 参数 数值
    θ1/(°) 17 d/m 1
    θ2/(°) 14 L1/m 17.65
    ϕ1/m 3.7 L2/m 21
    ϕ2/m 2 L3/m 45.5
    R1/m 0.66 L4/m 50
    R2/m 0.22
    下载: 导出CSV

    表  2  不确定性分析结果

    Table  2.   Uncertainty analysis results

    参数 峰值1 峰值2 峰值3
    位置/m 3.862 3.862 33.83
    均值/μ 51.02 362.1 391.5
    标准差Δ/kN 5.560 22.91 42.23
    不确定度/% 10.90 6.327 10.79
    下载: 导出CSV
  • [1] 王锋. 运载火箭载荷计算及通用软件实现[D]. 长沙: 国防科学技术大学, 2001.

    WANG F. Calculation of launch vehicle load and software design[D]. Changsha: National University of Defense Technology, 2001(in Chinese).
    [2] WANG Y, YU X. Robust optimization of aerodynamic design using surrogate model[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2007, 24(3): 181-187.
    [3] BELLMAN R E, ZADEH L A. Decision-making in a fuzzy environment[J]. Management Science, 1970, 17(4): 141-164. doi: 10.1287/mnsc.17.4.B141
    [4] FAES M. Interval methods for the identification and quantification of inhomogeneous uncertainty in finite element models[D]. Belgium: KU Leuven, 2017.
    [5] 宋鑫, 郑冠男, 杨国伟, 等. 几何不确定性区间分析及鲁棒气动优化设计[J]. 北京航空航天大学学报, 2019, 45(11): 2217-2227. doi: 10.13700/j.bh.1001-5965.2019.0077

    SONG X, ZHENG G N, YANG G W, et al. Interval analysis for geometric uncertainty and robust aerodynamic optimization design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2217-2227(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0077
    [6] 邬晓敬, 张伟伟, 宋述芳, 等. 翼型跨声速气动特性的不确定性及全局灵敏度分析[J]. 力学学报, 2015, 47(4): 587-595. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201504006.htm

    WU X J, ZHANG W W, SONG S F, et al. Uncertainty quantification and global sensitivity analysis of transonic aerodynamics about airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 587-595(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201504006.htm
    [7] UEMATSU T, ASO S, TANI Y. Supersonic flight separation simulation for TSTO launch vehicles considering shock wave interaction reduction[C]//Proceedings of the AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
    [8] 沈丹, 吴彦森, 岑拯. 芯级与助推器头部气动干扰流场数值模拟[J]. 导弹与航天运载技术, 2013(6): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH201306015.htm

    SHEN D, WU Y S, CEN Z. Numerical simulation of aerodynamic interaction characteristics between the rocket and a booster's nosecone[J]. Missiles and Space Vehicles, 2013(6): 42-46(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH201306015.htm
    [9] STEFANOU G. The stochastic finite element method: Past, present and future[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(9): 1031-1051.
    [10] SPANOS P D, GHANEM R. Stochastic finite element expansion for random media[J]. Journal of Engineering Mechanics, 1989, 115(5): 1035-1053. doi: 10.1061/(ASCE)0733-9399(1989)115:5(1035)
    [11] GHANEM R G, SPANOS P D. Stochastic finite elements: A spectral approach[M]. Berlin: Springer, 1992.
    [12] MOENS D, HANSS M. Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances[J]. Finite Elements in Analysis and Design, 2011, 47(1): 4-16. doi: 10.1016/j.finel.2010.07.010
    [13] MLLER B, GRAF W, BEER M. Fuzzy structural analysis using alpha-level optimization[J]. Computational Mechanics, 2000, 26(6): 547-565. doi: 10.1007/s004660000204
    [14] BETTIS B, HOSDER S, WINTER T. Efficient uncertainty quantification in multidisciplinary analysis of a reusable launch vehicle[C]//Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011.
    [15] HOSDER S, WALTERS R W, BALCH M. Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics[J]. AIAA Journal, 2010, 48(12): 2721-2730. doi: 10.2514/1.39389
    [16] 宋赋强, 阎超, 马宝峰, 等. 锥导乘波体构型的气动特性不确定度分析[J]. 航空学报, 2017, 39(2): 97-106. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201802009.htm

    SONG F Q, YAN C, MA B F, et al. Uncertainty analysis of aerodynamic characteristics for cone-derived waverider configuration[J]. Acta Aeronautica et Astronautica Sinica, 2017, 39(2): 97-106(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201802009.htm
    [17] 肖思男, 吕震宙, 王薇. 不确定性结构全局灵敏度分析方法概述[J]. 中国科学: 物理学、力学、天文学, 2018, 48(1): 4-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201801003.htm

    XIAO S N, LV Z Z, WANG W. A review of global sensitivity analysis for uncertainty structure[J]. Scientia Sinica Physica, Mechanica and Astronomica, 2018, 48(1): 4-21(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201801003.htm
    [18] XIAO S N, LU Z Z, XU L Y. A new effective screening design for structural sensitivity analysis of failure probability with the epistemic uncertainty[J]. Reliability Engineering and System Safety, 2016, 156(12): 1-14.
    [19] SOBOL'I M, KUCHERENKO S. Derivative based global sensitivity measures and their link with global sensitivity indices[J]. Mathematics and Computers in Simulation, 2016, 79(10): 3009-3017.
    [20] SOBOL'I M. Sensitivity analysis for non-linear mathematical models[J]. Mathematical Modeling and Computational Experiment, 1993, 1(1): 407-414.
    [21] SOBOL'I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2014, 55(1-3): 271-280.
    [22] QIAO L, HOMMA T. A new importance measure for sensitivity analysis[J]. Journal of Nuclear Science and Technology, 2010, 47(1): 53-61. doi: 10.1080/18811248.2010.9711927
    [23] MANI M, NAGHIB-LAHOUTI A, NAZARINIA M. Experimental and numerical aerodynamic analysis of a satellite launch vehicle with strap-on boosters[J]. Aeronautical Journal, 2016, 108(1085): 379-386.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  12
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-27
  • 录用日期:  2021-01-15
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回
    常见问答