留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机载中空纤维膜组件壳程气体流动数值模拟

刘国田 白文涛 潘江丽 陈广豪 潘俊 冯诗愚

刘国田, 白文涛, 潘江丽, 等 . 机载中空纤维膜组件壳程气体流动数值模拟[J]. 北京航空航天大学学报, 2022, 48(3): 544-550. doi: 10.13700/j.bh.1001-5965.2020.0612
引用本文: 刘国田, 白文涛, 潘江丽, 等 . 机载中空纤维膜组件壳程气体流动数值模拟[J]. 北京航空航天大学学报, 2022, 48(3): 544-550. doi: 10.13700/j.bh.1001-5965.2020.0612
LIU Guotian, BAI Wentao, PAN Jiangli, et al. Numerical simulation of shell-side gas flow of airborne hollow fiber membrane module[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 544-550. doi: 10.13700/j.bh.1001-5965.2020.0612(in Chinese)
Citation: LIU Guotian, BAI Wentao, PAN Jiangli, et al. Numerical simulation of shell-side gas flow of airborne hollow fiber membrane module[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 544-550. doi: 10.13700/j.bh.1001-5965.2020.0612(in Chinese)

机载中空纤维膜组件壳程气体流动数值模拟

doi: 10.13700/j.bh.1001-5965.2020.0612
基金项目: 

国家自然科学基金 U1933121

中央高校基本科研业务费专项资金 

南京航空航天大学研究生创新基地(实验室)开放基金 kfjj20200110

江苏高校优势学科建设工程 

详细信息
    通讯作者:

    冯诗愚, E-mail: shiyuf@nuaa.edu.cn

  • 中图分类号: V245

Numerical simulation of shell-side gas flow of airborne hollow fiber membrane module

Funds: 

National Natural Science Foundation of China U1933121

the Fundamental Research Funds for the Central Universities 

Funds from the Postgraduate Creative Base in Nanjing University of Areonautics and Astronautics kfjj20200110

Priority Academic Program Development of Jiangsu Higher Education Institutions 

More Information
  • 摘要:

    机载惰化用中空纤维膜组件具有分离效率高、安全稳定、结构紧凑等优点,是目前较为经济高效的飞机燃油箱惰化设备。采用计算流体力学(CFD)方法对某中空纤维膜组件壳程气体流动进行数值模拟,通过更改膜丝束间距、膜丝束入口速度、膜丝束流量、膜丝束排布方式及飞行高度,得到了不同工况下的组件轴向各截面的气体流动分布,并提出无量纲参数截面平均速度比来描述气体流动分布规律。仿真结果表明:在保持入口气体流动速度一定时,平均速度比值随着膜丝束间距的减小先减小后增大,在膜丝束间距为1.5倍膜丝半径时达到最小值, 在保持入口流量一定时,壳程气体流动有着相同的规律;在保持膜丝束填充数量不变时,均匀排布比不均匀排布的平均速度比值更小;保持膜丝束间距不变时,入口速度对平均速度比值影响不大;飞行高度对组件壳程气体分布的影响作用主要体现在膜组件内壁处。

     

  • 图 1  膜组件几何模型

    Figure 1.  Geometric model of membrane module

    图 2  膜组件三维非结构网格

    Figure 2.  Unstructured 3D mesh of membrane module

    图 3  网格无关性验证

    Figure 3.  Gird independence verification

    图 4  膜丝束排布方式

    Figure 4.  Arrangement mode of membrane tows

    图 5  膜组件速度和压力云图

    Figure 5.  Velocity and pressure contour of membrane module

    图 6  入口速度不变时不同L下的θ

    Figure 6.  Values of θ for different L with constant entrance velocity

    图 7  入口流量不变时不同L下的θ

    Figure 7.  Values of θ for different L with constant entrance flow rate

    图 8  膜丝束间距不变时不同v下的θ

    Figure 8.  Values of θ for different v with constant entrance L

    图 9  不同膜丝束排布方式下的θ

    Figure 9.  Values of θ in different arrangement modes of membrane tow

    图 10  飞行高度与组件截面平均速度关系

    Figure 10.  Relation between flight height and average section velocity of membrane module

    图 11  飞行高度与膜丝束间截面平均速度关系

    Figure 11.  Relation between flight height and average section velocity of membrane tow

  • [1] 李红宾, 石文英, 张海霞, 等. 中空纤维膜膜蒸馏过程研究进展[J]. 高分子材料科学与工程, 2020, 36(1): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-GFZC202001027.htm

    LI H B, SHI W Y, ZHANG H X, et al. Progress on the processes of hollow fiber membrane distillation[J]. Polymer Materials Science & Engineering, 2020, 36(1): 175-182(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFZC202001027.htm
    [2] 朱加良, 孙奥博, 高志丰. 膜分离技术特点分析及应用[J]. 电站系统工程, 2020, 36(3): 73-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXT202003023.htm

    ZHU J L, SUN A B, GAO Z F. Analysis and application of membrane separation technology[J]. Power System Engineering, 2020, 36(3): 73-74(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXT202003023.htm
    [3] 卢吉. 机载空分装置及惰化系统的理论研究[D]. 南京: 南京航空航天大学, 2012.

    LU J. Theoretical study of onboard air separation unit and inerting system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
    [4] 王明波, 邵垒, 潘俊, 等. 耗氧型燃油箱惰化技术历史和现状[J]. 航空科学技术, 2016, 27(7): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201607002.htm

    WANG M B, SHAO L, PAN J, et al. History and current status of oxygen consumption based fuel tank inerting technology[J]. Aeronautical Science & Technology, 2016, 27(7): 1-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201607002.htm
    [5] 汪明明, 冯诗愚, 蒋军昌, 等. 飞机燃油箱冲洗与洗涤惰化技术比较分析[J]. 南京航空航天大学学报, 2010, 42(5): 614-619. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201005015.htm

    WANG M M, FENG S C, JIANG J C, et al. Comparative analysis of fuel washing and scrubbing in aircraft fuel tank[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5): 614-619(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201005015.htm
    [6] AHMAD A L, LAU K K, BAKAR M Z A, et al. Integrated CFD simulation of concentration polarization in narrow membrane channel[J]. Computers & Chemical Engineering, 2005, 29(10): 2087-2095.
    [7] MARCOS B, MORESOLI C, SKOREPOVA J, et al. CFD modeling of a transient hollow fiber ultrafiltration system for protein concentration[J]. Journal of Membrane Science, 2009, 337(1/2): 136-144.
    [8] PARVAREH A, RAHIMI M, MADAENI S S, et al. Experimental and CFD study on the role of fluid flow pattern on membrane permeate flux[J]. Chinese Journal of Chemical Engineering, 2011, 19(1): 18-25. doi: 10.1016/S1004-9541(09)60171-3
    [9] 卞锐, 许松林. 中空纤维式渗透汽化膜内流动的CFD模拟[J]. 现代化工, 2013, 33(10): 116-118. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201310038.htm

    BIAN R, XU S L. CFD modeling of flow in hollow fiber pervaporation membrane[J]. Modern Chemical Industry, 2013, 33(10): 116-118(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201310038.htm
    [10] ARDANEH M, ABOLHASANI M, ESMAEILI M. CFD modeling of two-stage H2 recovery process from ammonia purge stream by industrial hollow fiber membrane modules[J]. International Journal of Hydrogen Energy, 2019, 44(10): 4851-4867.
    [11] 杨毅, 王保国, 彭勇. 中空纤维膜组件壳程流动的数值模拟[J]. 化工学报, 2008, 59(8): 1979-1985. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ200808017.htm

    YANG Y, WANG B G, PENG Y. Numerical simulation of shell-side flow in hollow fiber membrane modules[J]. CIESC Journal, 2008, 59(8): 1979-1985(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ200808017.htm
    [12] BUETEHORN S, VOLMERING D, VOSSENKAUL K, et al. CFD simulation of single-and multi-phase flows through submerged membrane units with irregular fiber arrangement[J]. Journal of Membrane Science, 2011, 384(1/2): 184-197.
    [13] 吴云, 张楠, 张宏伟, 等. 膜曝气生物膜反应器内流场的CFD模拟及组件优化[J]. 化工学报, 2015, 66(1): 402-409. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201501051.htm

    WU Y, ZHANG N, ZHANG H W, et al. CFD simulation of internal hydrodynamic characteristics and optimization of membrane module in membrane aerated biofilm reactor[J]. CIESC Journal, 2015, 66(1): 402-409(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201501051.htm
    [14] COSTELLO M J, FANE A G, HOGAN P A, et al. The effect of shell side hydrodynamics on the performance of axial flow hollow fibre modules[J]. Journal of Membrane Science, 1993, 80(1): 1-11.
    [15] CAI J J, HAWBOLDT K, ABDI M A. Analysis of the effect of module design on gas absorption in cross flow hollow membrane contactors via computational fluid dynamics (CFD) analysis[J]. Journal of Membrane Science, 2016, 520: 415-424.
    [16] MA C Y, LIU Y B, LI F, et al. CFD simulations of fiber-fiber interaction in a hollow fiber membrane bundle: Fiber distance and position matters[J]. Separation and Purification Technology, 2019, 209: 707-713.
  • 加载中
图(11)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  2
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 录用日期:  2020-12-11
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回
    常见问答