Off-axis tensile mechanical properties of 3D five-directional braided composites with void defects
-
摘要:
针对孔隙缺陷对材料力学性能的重要影响,在材料细观模型中引入随机分布的孔隙缺陷,研究了含孔隙缺陷三维五向编织复合材料的偏轴拉伸力学性能。基于2种典型编织角试件,讨论了孔隙率对材料正轴力学性能的影响,通过与实验数据对比,确定了材料的孔隙率。结合周期性边界条件施加偏轴拉伸载荷,获取了不同偏轴角度下材料的应力-应变曲线,并预测了材料的强度性能。模拟了典型偏轴角度下材料的细观损伤起始、演化过程,分析了材料的失效机理,为其他复合材料结构孔隙缺陷问题及偏轴载荷问题数值分析提供了一定的参考。
Abstract:In view of the important influence of void defects on the mechanical properties of materials, the off-axis tensile mechanical properties of 3D five-directional braided composites with voids are studied by introducing randomly distributed void defects into the meso-scale model of material. For two specimens with typical braided angles, the effect of void contents on the on-axis mechanical properties was discussed and the appropriate void contents were determined by comparing with the available experimental data. Based on the periodic boundary conditions, the off-axis load was applied to obtain the stress-strain curves of the material under different off-axis angles and the strength properties were thus predicted. The meso-scale damage initiation and evolution processes of the composites under typical off-axis angles were simulated and the failure mechanism was analyzed in detail, which provides a proper reference for the numerical analysis of void defects and off-axis loading problems of other composite structures.
-
Key words:
- 3D five-directional /
- braided composites /
- void defect /
- off-axial tensile /
- finite element analysis
-
表 1 试件工艺参数[18]及单胞模型结构参数
Table 1. Process parameters of specimen[18] and structure parameters of unit-cell model
试件 纤维单丝数量 试件尺寸/(mm×mm×mm) 编织角α/(°) W/mm h/mm Vf 编织纱 轴向纱 5DS1 9 000 6 000 20×4×150 20 3.052 8.415 45 5DS2 9 000 6 000 20×4×150 40 3.357 4.012 50 表 2 组分材料力学性能参数
Table 2. Mechanical properties of component materials
组分材料 Ef1/GPa Ef2/GPa Gf12/GPa Gf23/GPa μf12 Em/GPa μm XT/MPa XC/MPa S/MPa T300 220 13.89 9 4.8 0.2 3 000 2 070 酚醛 3.2 0.35 75 180 60 表 3 试件5DS1拉伸强度预测值与实验结果对比
Table 3. Comparison between predicted and experimental tensile strengths of specimen 5DS1
试件 孔隙率/% 拉伸强度/MPa 预测值 实验结果 5DS1 0 681 632 0.1 647 0.5 618 1 598 1.5 576 2 549 表 4 试件5DS2拉伸强度预测值与实验结果对比
Table 4. Comparison between predicted and experimental tensile strengths of specimen 5DS2
试件 孔隙率/% 拉伸强度/MPa 预测值 实验结果 5DS1 0 346 259 0.1 280 0.5 280 1 266 1.5 271 2 267 表 5 试件5DS1偏轴拉伸力学性能
Table 5. Mechanical properties of specimen 5DS1 under off-axial tension
试件 偏轴角度/(°) 拉伸强度/MPa 断裂应变/% 5DS1 0 618.9 0.847 30 423.1 0.842 45 297.3 0.998 60 177.1 1.313 表 6 试件5DS2偏轴拉伸力学性能
Table 6. Mechanical properties of specimen 5DS2 under off-axial tension
试件 偏轴角度/(°) 拉伸强度/MPa 断裂应变/% 5DS2 0 271.5 0.673 30 267.8 0.787 45 251.9 1.021 60 175.6 1.157 -
[1] 张超. 三维多向编织复合材料宏细观力学性能及高速冲击损伤研究[D]. 南京: 南京航空航天大学, 2013.ZHANG C. Research on macro-meso-mechanical properties and high velocity impact damage of 3D multi-directional braided composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese). [2] XU K, XU X W. Finite element analysis of mechanical properties of 3D five-directional braided composites[J]. Materials Science and Engineering: A, 2008, 487(1-2): 499-509. doi: 10.1016/j.msea.2007.10.030 [3] LI D S, LU Z X, CHEN L, et al. Microstructure and mechanical properties of three-dimensional five-directional braided composites[J]. International Journal of Solids and Structures, 2009, 46(18-19): 3422-3432. doi: 10.1016/j.ijsolstr.2009.05.013 [4] 韩小进, 孙慧玉, 闫光, 等. 三维五向编织复合材料渐进损伤分析的数值方法[J]. 复合材料学报, 2012, 29(6): 219-224.HAN X J, SUN H Y, YAN G, et al. Numerical method for progressive damage analysis of 3D five-directional braided composites[J]. Acta Materiae Compositae Sinica, 2012, 29(6): 219-224(in Chinese). [5] ZHANG D T, SUN Y, WANG X M, et al. Meso-scale finite element analyses of three-dimensional five-directional braided composites subjected to uniaxial and biaxial loading[J]. Journal of Reinforced Plastics and Composites, 2015, 34(24): 1989-2005. doi: 10.1177/0731684415596629 [6] HUANG T, GONG Y H. A multiscale analysis for predicting the elastic properties of 3D woven composites containing void defects[J]. Composite Structures, 2018, 185: 401-410. doi: 10.1016/j.compstruct.2017.11.046 [7] MEHDIKHANI M, PETROV N A, STRAUMIT I, et al. The effect of voids on matrix cracking in composite laminates as revealed by combined computations at the micro- and meso-scales[J]. Composites Part A: Applied Science and Manufacturing, 2019, 117: 180-192. doi: 10.1016/j.compositesa.2018.11.009 [8] LIU T, FAN W, WU X Y. Comparisons of influence of random defects on the impact compressive behavior of three different textile structural composites[J]. Materials & Design, 2019, 181: 108073. [9] XU K, QIAN X M. An FEM analysis with consideration of random void defects for predicting the mechanical properties of 3D braided composites[J]. Advances in Materials Science and Engineering, 2014, 2014: 1-12. [10] DONG J W, HUO N F. A two-scale method for predicting the mechanical properties of 3D braided composites with internal defects[J]. Composite Structures, 2016, 152: 1-10. doi: 10.1016/j.compstruct.2016.05.025 [11] GAO X H, YUAN L, FU Y T, et al. Prediction of mechanical properties on 3D braided composites with void defects[J]. Composites Part B: Engineering, 2020, 197: 108164. doi: 10.1016/j.compositesb.2020.108164 [12] GE L, LI H M, LIU B S, et al. Multi-scale elastic property prediction of 3D five-directional braided composites considering pore defects[J]. Composite Structures, 2020, 244: 112287. doi: 10.1016/j.compstruct.2020.112287 [13] 牛序铭. 偏轴载荷下单向陶瓷基复合材料拉伸行为数值模拟及应用[D]. 南京: 南京航空航天大学, 2018: 83-98.NIU X M. Numerical simulation of tensile behavior of unidirectional ceramic matrix composite under off-axial loading and its application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 83-98(in Chinese). [14] 杨昌. 复合材料单向板偏轴疲劳寿命预测研究[D]. 南京: 南京航空航天大学, 2014: 36-41.YANG C. Research on fatigue life prediction of unidirectional composite[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 36-41(in Chinese). [15] LU Z X, ZHOU Y, YANG Z Y, et al. Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension[J]. Computational Materials Science, 2013, 79: 485-494. doi: 10.1016/j.commatsci.2013.07.003 [16] WANG L, ZHAO B, WU J Y, et al. Experimental and numerical investigation on mechanical behaviors of woven fabric composites under off-axial loading[J]. International Journal of Mechanical Sciences, 2018, 141: 157-167. doi: 10.1016/j.ijmecsci.2018.03.030 [17] XIA Z H, ZHANG Y F, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures, 2003, 40(8): 1907-1921. doi: 10.1016/S0020-7683(03)00024-6 [18] 李仲平, 卢子兴, 冯志海, 等. 三维五向碳/酚醛编织复合材料的拉伸性能及破坏机理[J]. 航空学报, 2007, 28(4): 869-873. doi: 10.3321/j.issn:1000-6893.2007.04.017LI Z P, LU Z X, FENG Z H, et al. Investigation of the tensile properties and failure mechanism of integrally-braided 5D carbon/phenolic composites[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 869-873(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.04.017 [19] CHAMIS C C. Mechanics of composites materials: Past, present and future[J]. Journal of Composites Technology and Research, 1989, 11(1): 3-14. doi: 10.1520/CTR10143J [20] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. doi: 10.1115/1.3153664 [21] MURAKAMI S. Mechanical modeling of material damage[J]. Journal of Applied Mechanics, 1988, 55(2): 280-286. doi: 10.1115/1.3173673