-
摘要:
星载抛物面天线在轨运行时由于姿态调整或环境因素变化,可能产生振动,从而降低其工作性能。为了减弱振动的影响,需采取加装张紧绳索的方法来提升天线刚度。提出了一种新型张紧绳索多层设计方法,通过将抛物面天线划分为多层,调整各层绳索的张紧力,从而提高天线结构刚度,同时尽量降低张紧力引起的形面误差。为了验证所提方法的有效性,建立了天线的有限元模型。在此基础上进行了有限元分析,研究了不同张紧力参数配置下的结构刚度和形面误差,并以提升结构刚度的同时降低张紧力引起的形面误差为目标,对张紧力参数进行了优化设计。为了提高计算效率,采用响应面法建立代理模型参与优化迭代计算。采用非劣排序遗传算法(NSGA-Ⅱ)完成优化迭代计算,优化后的张紧力参数使天线的性能得到了进一步的提升,为构架式可展开抛物面天线的设计提供理论指导。
Abstract:Satellite-borne paraboloid antenna may vibrate during orbit operation due to attitude adjustment or environmental factors, thus reducing its performance. In order to reduce the influence of vibration, it is necessary to add tension rope to enhance the antenna stiffness. Therefore, a new multi-layer design method of tension rope is proposed. In this method, the paraboloid antenna is divided into multiple layers and the tension of each layer is adjusted to improve the structural stiffness of the antenna and reduce the shape error caused by the tension force as far as possible. In order to verify the effectiveness of the above method, the finite element model of the antenna is established. On this basis, the finite element analysis is carried out, and the structural stiffness and shape error under different tension parameters are studied. In order to improve the stiffness of the structure and reduce the shape error caused by the tension force, the tension parameters are optimized. In order to improve the efficiency of optimization calculation, the response surface method is used to establish a surrogate model to participate in the optimization iterative calculation. Non-inferior sorting genetic algorithm (NSGA-Ⅱ) is used to complete the iterative calculation. The optimized tension parameters further improve the performance of the antenna. This research can provide theoretical guidance for the design of truss deployable paraboloid antenna.
-
Key words:
- paraboloid antenna /
- tension rope /
- shape error /
- finite element analysis /
- optimization design
-
表 1 Bushing元位移刚度参数设置
Table 1. Parameter setting of displacement stiffness for Bushing coupling
位移刚度 数值/(N·mm-1) D11 108 D22 108 D33 108 表 2 Bushing元转动刚度参数设置
Table 2. Parameter setting of rotational stiffness for Bushing coupling
转动刚度 数值/(N·mm·rad-1) D44 108 D55 108 D66 10 表 3 模型属性设置
Table 3. Model property setting
参数 杆 绳索 材料 铝合金 钢丝 弹性模量/MPa 7×104 1.5×105 密度/(t·mm-3) 2.84×10-9 7.9×10-9 泊松比 0.31 0.31 单元类型 Beam Truss 网格类型 Beam T3D2 截面尺寸/mm 直径: 15, 厚度: 1 直径:1 表 4 无绳索天线固有频率及平均固有频率
Table 4. Natural frequency and average natural frequency of cordless antenna
阶层 固有频率(方案0)/Hz 1阶 0.490 2阶 0.800 3阶 1.841 4阶 4.350 5阶 6.732 6阶 8.203 C 0.962 表 5 张紧力布置方案
Table 5. Tension arrangement scheme
阶层 张紧力/N 方案1 方案2 方案3 方案4 1层 200 140 220 290 2层 200 300 270 250 3层 200 170 190 110 4层 200 190 120 150 表 6 不同方案各阶固有频率及平均固有频率
Table 6. Natural frequency and average natural frequency of each order for different schemes
阶层 固有频率/Hz 方案1 方案2 方案3 方案4 1阶 0.503 0.504 0.504 0.505 2阶 0.808 0.808 0.808 0.808 3阶 1.830 1.829 1.829 1.830 4阶 6.938 6.920 6.920 6.910 5阶 10.078 10.046 10.046 10.029 6阶 16.291 16.285 16.285 16.283 C 1.022 1.023 1.023 1.025 表 7 不同方案形面误差
Table 7. Shape error of different schemes
方案 张紧力/N 形面误差/mm 1层 2层 3层 4层 方案1 200 200 200 200 0.177 方案2 140 300 170 190 0.066 方案3 220 270 190 120 0.109 方案4 290 250 110 150 0.056 表 8 响应面精度系数
Table 8. Response surface accuracy coefficient
指标 RMSE R2 C 0.000 076 0.992 176 T 0.003 468 0.999 587 表 9 优化算法参数配置
Table 9. Parameter configuration of optimization algorithm
参数 数值 种群数 12 进化代数 20 交叉指数 10 变异指数 20 交叉概率 0.9 表 10 最优解验证
Table 10. Verification of optimal solution
名称 最优解 对照组 F1/N 271.95 200 F2/N 249.21 200 F3/N 103.38 200 F4/N 101.13 200 C/Hz 1.024 1.023 T/mm 0.020 0.177 -
[1] ANDO K, MITSUGI J, SENBOKUYA Y. Analyses of cable-membrane structure combined with deployable truss[J]. Computers & Structures, 2000, 74(1): 21-39. [2] 刘荣强, 田大可, 邓宗全, 等. 多模块构架式空间可展开天线背架的模态分析[J]. 北京理工大学学报, 2011, 31(6): 685-690.LIU R Q, TIAN D K, DENG Z Q, et al. Modal analysis of truss structure for deployable truss antenna with multi-module[J]. Journal of Beijing University of Technology, 2011, 31(6): 685-690(in Chinese). [3] 崔吉. 大尺度可展开式抛物面天线机构的设计与展开性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2012.CUI J. Design and analysis of large volume deployable parabolic antenna mechanism[D]. Harbin: Harbin Institute of Technology, 2012(in Chinese). [4] 史创. 基于四棱柱可展单元的索杆张拉式天线机构研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.SHI C. Research on cable-strut tension antenna mechanism based on quadriprism deployable unit[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese). [5] 刘望. 星载大型索网天线结构非线性动力学建模及形面误差特性研究[D]. 长沙: 国防科学技术大学, 2013.LIU W. Research on nonlinear dynamic modeling and surface error characteristics of spaceborne large cable-network antenna structures[D]. Changsha: University of National Defense Science and Technology, 2013(in Chinese). [6] 杨东武, 保宏. 非对称索网抛物面天线力平衡特性及预拉力设计[J]. 机械工程学报, 2009, 45(8): 314-318.YANG D W, BAO H. Force balance characteristics and pretension design of asymmetric cable net paraboloid antenna[J]. Journal of Mechanical Engineering, 2009, 45(8): 314-318(in Chinese). [7] 王朋朋, 薛永刚, 高博. 伞状天线张力绳索热变形敏感性分析[J]. 空间电子技术, 2014, 11(3): 20-24. doi: 10.3969/j.issn.1674-7135.2014.03.005WANG P P, XUE Y G, GAO B. Sensitivity analysis of tensile cables thermal distortion in umbrella antenna[J]. Space Electronics Technology, 2014, 11(3): 20-24(in Chinese). doi: 10.3969/j.issn.1674-7135.2014.03.005 [8] 侯国勇, 关富玲, 赵孟良. 桁架式可展开天线精度计算方法[J]. 浙江大学学报(工学版), 2008, 42(9): 1469-1473. doi: 10.3785/j.issn.1008-973X.2008.09.001HOU G Y, GUAN F L, ZHAO M L. Error computation method of deployable truss antenna[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(9): 1469-1473(in Chinese). doi: 10.3785/j.issn.1008-973X.2008.09.001 [9] 范叶森, 马小飞, 李正军, 等. 绳索长度误差对索网天线网面精度影响的分析方法[J]. 华南理工大学学报(自然科学版), 2014, 42(8): 64-69.FAN Y S, MA X F, LI Z J, et al. Analysis method of influence of cable length errors on surface accuracy of cable-net antennas[J]. Journal of South China University of Technology (Natural Science), 2014, 42(8): 64-69(in Chinese). [10] 高海燕, 袁茹, 王三民. 径射状可展天线反射器结构固有模态分析[J]. 机械设计与制造, 2007(5): 174-176. doi: 10.3969/j.issn.1001-3997.2007.05.073GAO H Y, YUAN R, WANG S M. The natural modal analysis for reflectible device of space deployable antenna[J]. Mechanical Design and Manufacturing, 2007(5): 174-176(in Chinese). doi: 10.3969/j.issn.1001-3997.2007.05.073 [11] 李彬, 胡国伟, 黄芬. 周边桁架可展开天线索网结构力密度优化找形方法[J]. 桂林电子科技大学学报, 2009, 29(5): 373-376. doi: 10.3969/j.issn.1673-808X.2009.05.001LI B, HU G W, HUANG F. Form-finding optimization of flexible cable net of AstroMesh deployable reflector by force-density method[J]. Journal of Guilin University of Electronic Technology, 2009, 29(5): 373-376(in Chinese). doi: 10.3969/j.issn.1673-808X.2009.05.001 [12] 方永刚, 薛永刚, 王勇. 卫星天线展开用kevlar绳索使用寿命研究[C]//第三届中国国际复合材料科技大会, 2017: 1.FANG Y G, XUE Y G, WANG Y. Research on the service life of kevlar ropes for satellite antenna deployment[C]//The 3rd China International Composite Science and Technology Conference, 2017: 1(in Chinese). [13] 刘兆晶. 模块化可展开抛物面天线支撑机构设计与研制[D]. 哈尔滨: 哈尔滨工业大学, 2011.LIU Z J. Design and manufacture of supporting structure for modular deployable parabpolic antenna[D]. Harbin: Harbin Institute of Technology, 2011(in Chinese). [14] MEGURO A, ISHIKAWA H, TSUJIHATA A. Study on ground verification for large deployable modular structures[J]. Journal of Spacecraft & Rockets, 2006, 43(4): 780-787. [15] MA Z D, KIKUCHI N, CHENG H C. Topological design for vibrating structures[J]. Computer Method in Applied Mechanics and Engineering, 1995, 121(1-4): 259-280. doi: 10.1016/0045-7825(94)00714-X [16] 吴宏宇, 王春洁, 丁宗茂, 等. 两种着陆模式下的着陆器缓冲机构构型优化[J]. 宇航学报, 2017, 38(10): 1032-1040. doi: 10.3873/j.issn.1000-1328.2017.10.003WU H Y, WANG C J, DING Z M, et al. Configuration optimization of landing gear under two kinds of landing modes[J]. Acta Astronautics, 2017, 38(10): 1032-1040(in Chinese). doi: 10.3873/j.issn.1000-1328.2017.10.003 [17] WU H Y, NIU W D, WANG S X, et al. Sensitivity analysis of input errors to motion deviations of underwater glider based on optimized response surface methodology[J]. Ocean Engineering, 2020, 209: 107400. [18] WU H Y, NIU W D, WANG S X, et al. Prediction method of permissible error ranges of control parameters for underwater gliders under given operation accuracy[J]. Applied Ocean Research, 2020, 103: 102153.