-
摘要:
为研究弹丸底凹结构的减阻机理,使用三维定常CFD方法对M910弹丸的流场特性进行了数值模拟。给出了零升阻力系数随马赫数的变化规律,所得结果与实验数据符合很好。在此基础上,为M910弹丸引入底凹结构并进行数值模拟。对比了不同弹底结构的底部流场特性,对底凹结构减阻效应的产生机理进行了分析。结果表明:亚声速下,底凹结构在底凹腔体内引入了高压“死水区”,并以“屈从”的流体边界代替了原固体底面,从而改变了尾部涡街的形成位置、形状和强度,最终增大底部压力,减小弹丸阻力;跨声速下,由于尾部涡街远离弹丸底面,固体底面与流体边界面的作用相同,使得底凹不再具有减阻效果;超声速下,底凹结构的减阻机理与底排弹丸减阻机理类似,即底凹结构中的流体为弹丸底部回流区添加质量从而达到减阻作用。
Abstract:In order to investigate the drag reduction mechanism of the base-cavity projectile, the flow field characteristics of M910 projectile are numerically simulated through the 3-dimensional steady CFD method. The zero-lift drag coefficient variation with Mach number are presented. The computational results have a good agreement with the experimental data. On this basis, a base cavity is introduced for M910 projectile that is named M910BC in this paper and then numerically simulated. The base flow field characteristics of the projectile with different base structures are compared and the drag reduction mechanism of the base cavity is analyzed. The results show that at subsonic speed, the drag reduction of the base-cavity projectile is found to be mainly due to the introduction of the high-pressure "dead zone" in base cavity and the displacement of the solid base with the compliant fluid boundary of the cavity base. Because of that, the forming location, shape and strength of the wake vortex are slightly changed. At transonic speed, the drag reduction effect of base cavity is vanished since the wake vortex is further from the base of projectile and the effects of the solid base and fluid boundary are the same. At supersonic speed, the drag reduction mechanism of the base cavity is that the mass of the recirculation region is increased by the flow of the base cavity, which is similar to the drag reduction mechanism of the base bleed projectile.
-
表 1 网格无关性验证
Table 1. Grid independence verification
弹型 规格 网格数 阻力系数CD 计算时间/h M910 粗 1 247 191 0.209 3 5 中 1 974 720 0.227 4 7.9 细 3 117 979 0.227 6 12.5 M910BC 粗 1 281 160 0.203 5 5 中 2 028 504 0.218 1 8 细 3 202 901 0.218 8 12.6 表 2 计算网格特性
Table 2. Computational mesh characteristics
弹型 计算值 最优网格数目 径向边界距离 前向边界距离 后向边界距离 第一层网格厚度 M910 45.8 24.7 39.8 4×10-5 1 974 720 M910BC 45.8 24.7 39.8 4×10-5 2 028 504 表 3 来流条件与马赫数的关系
Table 3. Relationship between incoming flow conditions and Mach number
范围 马赫数 来流速度/(m·s-1) 亚声速 0.60 204.1 0.70 238.1 跨声速 0.90 306.2 0.98 333.4 1.02 347.0 1.20 408.3 超声速 2.00 680.4 2.50 850.5 3.00 1 021.1 3.50 1 190.7 表 4 亚声速下涡街中心信息
Table 4. Information of vortex street center at subsonic speed
弹型 马赫数 涡街中心坐标 涡街中心压力/Pa x/mm y/mm M910 0.6 80.042 7 5.390 8 94 511 0.7 80.181 0 5.344 7 92 193 M910BC 0.6 80.319 3 5.166 1 95 751 0.7 80.457 6 5.212 2 93 620 表 5 跨声速下涡街中心信息
Table 5. Information of vortex street center at transonic speed
弹型 马赫数 涡街中心坐标 涡街中心压力/Pa x/mm y/mm M910 0.90 80.642 0 5.483 0 86 368 0.98 80.872 5 5.252 5 79 307 1.02 80.411 5 5.160 3 74 054 1.20 80.181 0 4.975 9 68 160 M910BC 0.90 80.872 5 5.304 3 87 852 0.98 81.149 1 5.258 2 80 355 1.02 80.780 3 5.073 8 75 926 1.20 80.549 8 4.843 3 70 422 -
[1] 臧国才, 李树常. 弹箭空气动力学[M]. 北京: 兵器工业出版社, 1989: 142-144.ZANG G C, LI S C. Aerodynamics of projectiles and missiles[M]. Beijing: Publishing House of Ordnance Industry, 1989: 142-144(in Chinese). [2] TANNER M. Base cavity at angles of incidence[J]. AIAA Journal, 1988, 26(3): 376-377. doi: 10.2514/3.9903 [3] SAHU J. A computational study of the base region flow field for the M865 projectile: ARL-TR-109[R]. Reston: AIAA, 1993. [4] SAHU J, NIRTUBICZ C J. Three dimensional flow calculations for a projectile with standard and dome bases: BRL-TR-3150[R]. Reston: AIAA, 1990. [5] SAHU J, NIETUBICZ C J, HEAVEY K R. Computational study of the M825 projectile with standard and dome base: BRL-MR-3662[R]. Reston: AIAA, 1986. [6] HERRIN J L, DUTTON J C. Supersonic base flow experiments in the near-wake of a cylindrical afterbody[J] AIAA Jornal, 1994, 32(1): 77-83. doi: 10.2514/3.11953 [7] KRUISWYK R W, DUTTON J C. Effects of a base cavity on subsonic near-wake flow[J]. AIAA Journal, 1990, 28(11): 1885-1893. doi: 10.2514/3.10495 [8] KRUISWYK R W, DUTTON J C. An experimental investigation of the effects of base cavity on the near-wake flowfield of a body at subsonic and transonic speeds[C]//Proceedings of 27th Aerospace Sciences Meeting. Reston: AIAA, 1989: 210. [9] MOLEZZI M J, DUTTON J C. Study of subsonic base cavity flowfield structure using particle image velocimetry[J]. AIAA Journal, 1995, 33(2): 201-209. doi: 10.2514/3.12390 [10] FOURNIER E Y, DUPUIS A D, EDWARDS J A. Base cavity effects on the aerodynamic characteristics of a hypersonic flared projectile[J]. Journal of Spacecraft and Rockets, 1997, 34(6): 737-743. doi: 10.2514/2.3304 [11] FOURNIER E Y, DUPUIS A D. Computational fluid dynamic analysis of the base cavity interactions of the CAN-4 research projectile: DREV-TM-9620[R]. Quebec: Defense R & D, 1997. [12] SIMON F, DECK S, GUILLEN P, et al. Zonal-detached-eddy simulation of projectiles in the subsonic and transonic regimes[J]. AIAA Journal, 2007, 45(7): 1606-1619. doi: 10.2514/1.26827 [13] SIMON F, DECK S, GUILLEN P. Reynolds-averaged Navier-Stokes/large-eddy simulations of supersonic base flow[J]. AIAA Journal, 2006, 44(11): 2578-2590. doi: 10.2514/1.21366 [14] 谷嘉锦. 底凹弹丸的风洞实验研究[J]. 南京航空航天大学学报, 1979, 12(1): 243-253.GU J J. The study of wind tunnel experiments of a ball with hollow base[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1979, 12(1): 243-253(in Chinese). [15] 浦发, 王中原. 超音速底凹弹减阻机理的研究[J]. 弹道学报, 1989, 9(1): 63-67.PU F, WANG Z Y. The analysis of drag reduction in supersonic speed for projectiles with base cavity[J]. Journal of Ballisitics, 1989, 9(1): 63-67(in Chinese). [16] 王中原. 超声速底凹弹侧壁开孔对飞行阻力的影响[J]. 空气动力学学报, 1997, 15(4): 502-506.WANG Z Y. The effect about projectiles of base cavity with side holes to flight drag under supersonic flow[J]. Acta Aerodynamic Sinca, 1997, 15(4): 502-506(in Chinese). [17] 王中原. 底凹弹侧壁斜孔减小底阻分析[J]. 南京理工大学学报, 1997, 21(1): 21-24.WANG Z Y. Analysis of base drag reduced by side holes in the projectile with base cavity[J]. Journal of Nanjing University of Science and Technology, 1997, 21(1): 21-24(in Chinese). [18] PAN S C, CAI J S. Investigation of vortical flow over bluff bodies with base cavities[J]. Acta Mechanica Sinica, 2012, 28(5): 1238-1247. doi: 10.1007/s10409-012-0143-2 [19] 轩海彬, 张文洁, 于勇, 等. 亚跨声速流动中底凹减阻的数值模拟[J]. 兵器装备工程学报, 2017, 38(11): 1-8. doi: 10.11809/scbgxb2017.11.001XUAN H B, ZHANG W J, YU Y, et al. Numerical study on drag reduction of projectile in subsonic and transonic speed[J]. Journal of Ordnance Equipment Engineering, 2017, 38(11): 1-8(in Chinese). doi: 10.11809/scbgxb2017.11.001 [20] 陆海波, 颛孙世周, 孙凤文, 等. 不同形状底凹结构对火炮弹丸飞行阻力影响研究[J]. 弹箭与制导学报, 2016, 36(5): 112-114.LU H B, ZHUANSUN S Z, SUN F W, et al. Research on influence of base cavity with different shape on aerodynamic drag of projectile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(5): 112-114(in Chinese). [21] 陆海波, 高洁. 侧倾底凹结构对火炮弹丸阻力的影响[J]. 兵器装备工程学报, 2019, 40(6): 5-9.LU H B, GAO J. Research on shrinkage shape of base cavity upon aerodynamic drag of projectile[J]. Journal of Ordnance Equipment Engineering, 2019, 40(6): 5-9(in Chinese). [22] DESPIRITO J, HEAVEY K. CFD computation of magnus moment and roll-damping moment of a spinning projectile[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2004: 1-24. [23] 于勇. Fluent入门与进阶教程[M]. 北京: 北京理工大学出版社, 2008: 23-25.YU Y. Fluent introductory and advanced tutorials[M]. Beijing: Beijing Institute of Technology Press, 2008: 23-25(in Chinese). [24] LAUNDER B E, SHARMA B I. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc[J]. Letter in Heat and Mass Transfer, 1974, 1(11): 131-138. [25] 雷娟棉, 李田田, 黄灿. 高速旋转弹丸马格努斯效应数值研究[J]. 兵工学报, 2013, 34(6): 718-725.LEI J M, LI T T, HUANG C. A numerical investigation of Magnus effect for high-speed spinning projectile[J]. Acta Armamentarii, 2013, 34(6): 718-725(in Chinese). [26] 卓长飞, 武晓松, 封峰. 超声速流动中底部排气减阻的数值研究[J]. 兵工学报, 2014, 35(1): 18-26.ZHUO C F, WU X S, FENG F. Numerical research on drag reduction of base bleed in supersonic flow[J]. Acta Armamentarii, 2014, 35(1): 18-26(in Chinese).