Damage prediction and failure mechanism of composite laminates under high-velocity hailstone impact
-
摘要:
针对冰雹冲击对复合材料结构安全造成的潜在风险,提出了一种基于连续介质损伤力学的非线性有限元模型,研究了碳纤维复合材料层板冰雹高速冲击力学行为。综合采用拉格朗日法和光滑粒子流体动力学(SPH)法对冰雹进行建模,引入水的状态方程描述冰雹破碎后的流动特性;考虑应变率的单向复合材料本构模型,根据三维Hashin失效准则及材料刚度折减方案,进行复合材料层内损伤预测;引入界面单元结合双线性内聚力模型模拟层间分层现象;编写用户材料VUMAT子程序,实现基于ABAQUS/Explicit显式模块的数值求解。模拟了冰雹高速冲击复合材料层板的瞬态过程,分析了材料的损伤特性和失效机理。探讨了冰雹冲击速度、冲击角度对层板冲击损伤性能的影响,为复合材料结构冰雹冲击问题数值分析提供参考。
Abstract:Aiming at the potential risk of hailstone impact on the safety of composite structures, a continuum damage mechanics based nonlinear finite element model was developed to study the mechanical behavior of carbon fiber composite laminates under high-velocity hailstone impact. The Lagrangian method and smoothed particle hydrodynamics (SPH) method were used together to model the impact of hailstone, and the equation of state of water was introduced to describe the flow characteristics of the hailstone after breaking. A rate-dependent constitutive model of unidirectional composite, as well as 3D Hashin failure criteria and material stiffness reduction rule, was applied to predict the in-plane damage in composite layers. Interface elements governed by bilinear cohesive model were employed to simulate the inter-laminar delamination phenomena induced by impact. A user material subroutine VUMAT was coded and implemented to obtain the numerical solution based on ABAQUS/Explicit solver. The transient process of composite laminates under hailstone impact was reproduced and the damage characteristics and failure mechanism were analyzed in detail. The effects of impact velocity and impact angle of hailstone on the impact properties of composite laminates are discussed, which provides proper reference for numerical investigation of hailstone impact problems in composite structures.
-
Key words:
- carbon fiber composites /
- hailstone impact /
- high-velocity impact /
- damage /
- numerical simulation
-
表 1 材料刚度折减方案
Table 1. Material stiffness reduction scheme
失效模式 刚度折减系数 Ef1 Ef2 Gf12 Gf23 Em Gm 纤维拉伸失效 0.01 0.2 0.01 1 1 1 纤维压缩失效 0.01 0.2 0.01 1 1 1 基体拉伸失效 1 0.2 0.2 0.2 0.01 0.01 基体压缩失效 1 0.2 0.2 0.2 0.01 0.01 参数 数值 C/(cm·μs-1) 0.148 S1 2.559 S2 -1.98 S3 0.228 γ0 0.493 a 1.39 E 2.895×10-6 V/(Pa·S) 10-3 参数 数值 密度/(kg·m-3) 900 弹性模量/MPa 9 380 剪切模量/MPa 3 460 泊松比 0.33 压缩屈服强度/MPa 5.2 拉伸失效应力/MPa 0.517 应变率/s-1 屈服因子 应变率/s-1 屈服因子 0 1 500 3.62 0.1 1.01 103 3.84 0.5 1.5 5×103 4.33 1 1.71 104 4.55 5 2.2 5×104 5.04 10 2.42 105 5.25 50 2.91 5×105 5.75 100 3.13 106 5.96 参数 数值 密度/(kg·m-3) 1 440 K/(N·mm-3) 1×106 N/MPa 30 S=T/MPa 75 GIC/(N·mm-1) 0.3 GⅡC=GⅢC/(N·mm-1) 0.6 参数 数值 参数 数值 Ef1/GPa 230 G2/GPa 0.041 Ef2=Ef3/GPa 15 θg2/ms 12 000 Gf12=Gf13/GPa 2.35 ρ/(kg·m-3) 1 570 Gf23/GPa 24 Vf 0.6 Em/GPa 2.31 μ12=μ13 0.25 E1/GPa 0.971 μ23 0.38 θe1/ms 0.041 ξ 0.1 E2/GPa 0.104 XT/MPa 2 100 θe2/ms 121 000 XC/MPa 1 050 Gm/GPa 0.857 YT/MPa 71 G1/GPa 0.401 YC/MPa 132 θg1/ms 0.077 S/MPa 75 -
[1] 张超. 三维多向编织复合材料宏细观力学性能及高速冲击损伤研究[D]. 南京: 南京航空航天大学, 2013.ZHANG C. Research on macro-meso-mechanical properties and high velocity impact damage of 3D multi-directional braided composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese). [2] 朱倩. 纤维金属层板抗高速冲击性能及损伤机理研究[D]. 镇江: 江苏大学, 2020.ZHU Q. Study on impact resistance and damage mechanism of fiber metal laminates under high velocity impact[D]. Zhenjiang: Jiangsu University, 2020(in Chinese). [3] KIM H, KEDWARD K T. Modeling hail ice impacts and predicting impact damage initiation in composite structures[J]. AIAA Journal, 2000, 38(7): 1278-1288. doi: 10.2514/2.1099 [4] RHYMER J D. Force criterion prediction of damage for carbon/epoxy composite panels impacted by high velocity ice[D]. San Diego: University of California, 2012. [5] TANG E L, WANG J R, HAN Y F, et al. Microscopic damage modes and physical mechanisms of CFRP laminates impacted by ice projectile at high velocity[J]. Journal of Materials Research and Technology, 2019, 8(6): 5671-5686. doi: 10.1016/j.jmrt.2019.09.035 [6] 廖光兰. 冰高速冲击作用下复合材料层合板的动态响应及损伤研究[D]. 南京: 南京航空航天大学, 2018.LIAO G L. The dynamic response and damage research of laminates according to the high velocity ice impact[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese). [7] COLES L A, ROY A, SILBERSCHMIDT V V. Ice vs. steel: Ballistic impact of woven carbon/epoxy composites. Part Ⅱ: Numerical modelling[J]. Engineering Fracture Mechanics, 2020, 225: 106297. doi: 10.1016/j.engfracmech.2018.12.030 [8] PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J A, LÓPEZ-PUENTE J, et al. Numerical methodology to analyze the ice impact threat: Application to composite structures[J]. Materials & Design, 2018, 141: 350-360. [9] 周逃林. 层合复合材料冰雹和硬物冲击损伤研究[D]. 南京: 南京航空航天大学, 2019.ZHOU T L. Study on damage of composite laminate experienced impactions of hail and rigid impactor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019(in Chinese). [10] 王计真. 复合材料层合板抗冰雹冲击性能研究[J]. 兵工学报, 2017, 38(S1): 89-95.WANG J Z. Research on anti-hailstone impact behavior of laminated composite panel[J]. Acta Armamentarii, 2017, 38(S1): 89-95(in Chinese). [11] 张晓晴, 丁铁, 龙舒畅, 等. 复合材料加筋壁板的抗冰雹冲击动力响应及损伤预测[J]. 华南理工大学学报(自然科学版), 2017, 45(5): 120-128. doi: 10.3969/j.issn.1000-565X.2017.05.017ZHANG X Q, DING T, LONG S C, et al. Dynamic response and damage prediction of composite stiffened panel under hail impact[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(5): 120-128(in Chinese). doi: 10.3969/j.issn.1000-565X.2017.05.017 [12] DOLATI S H, REZAEEPAZHAND J, SHARIATI M. Numerical simulation of hail impact response of hybrid corrugated core sandwich panels[J]. Journal of Reinforced Plastics and Composites, 2019, 38(14): 643-657. doi: 10.1177/0731684419838332 [13] CARNEY K S, BENSON D J, DUBOIS P, et al. A phenomenological high strain rate model with failure for ice[J]. International Journal of Solids and Structures, 2006, 43(25-26): 7820-7839. doi: 10.1016/j.ijsolstr.2006.04.005 [14] TIPPMANN J D. Development of a strain rate sensitive ice material model for hail ice impact simulation[D]. San Diego: University of California, 2011. [15] KARIM M R, FATT M S H. Rate-dependent constitutive equations for carbon fiber-reinforced epoxy[J]. Polymer Composites, 2006, 27(5): 513-528. doi: 10.1002/pc.20221 [16] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. doi: 10.1115/1.3153664 [17] CAMANHO P P, DAVILA C G, DE MOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37(16): 1415-1438. doi: 10.1177/0021998303034505 [18] TIPPMANN J D, KIM H, RHYMER J D. Experimentally validated strain rate dependent material model for spherical ice impact simulation[J]. International Journal of Impact Engineering, 2013, 57: 43-54. doi: 10.1016/j.ijimpeng.2013.01.013 [19] ZHANG C, CURIEL-SOSA J L, BUI T Q. A novel interface constitutive model for prediction of stiffness and strength in 3D braided composites[J]. Composite Structures, 2017, 163: 32-43. doi: 10.1016/j.compstruct.2016.12.042 [20] 莫袁鸣, 赵振华, 罗刚, 等. 复合材料层合板冰雹冲击损伤研究[J]. 重庆理工大学学报(自然科学), 2020, 34(3): 112-121.MO Y M, ZHAO Z H, LUO G, et al. Investigation on damage of composite laminates subject to hail impact[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(3): 112-121(in Chinese). [21] WANG S X, WU L Z, MA L. Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates[J]. Materials & Design, 2010, 31(1): 118-125.