留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料层板冰雹高速冲击损伤预测及失效分析

张超 方鑫 刘建春

张超, 方鑫, 刘建春等 . 复合材料层板冰雹高速冲击损伤预测及失效分析[J]. 北京航空航天大学学报, 2022, 48(4): 698-707. doi: 10.13700/j.bh.1001-5965.2020.0636
引用本文: 张超, 方鑫, 刘建春等 . 复合材料层板冰雹高速冲击损伤预测及失效分析[J]. 北京航空航天大学学报, 2022, 48(4): 698-707. doi: 10.13700/j.bh.1001-5965.2020.0636
ZHANG Chao, FANG Xin, LIU Jianchunet al. Damage prediction and failure mechanism of composite laminates under high-velocity hailstone impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 698-707. doi: 10.13700/j.bh.1001-5965.2020.0636(in Chinese)
Citation: ZHANG Chao, FANG Xin, LIU Jianchunet al. Damage prediction and failure mechanism of composite laminates under high-velocity hailstone impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 698-707. doi: 10.13700/j.bh.1001-5965.2020.0636(in Chinese)

复合材料层板冰雹高速冲击损伤预测及失效分析

doi: 10.13700/j.bh.1001-5965.2020.0636
基金项目: 

江苏省普通高校研究生科研创新计划 KYCX20-3076

江苏省自然科学基金 BK20180855

机械结构力学及控制国家重点实验室开放课题 MCMS-E-0219Y01

详细信息
    通讯作者:

    张超, E-mail: zhangchao@ujs.edu.cn

  • 中图分类号: TB332

Damage prediction and failure mechanism of composite laminates under high-velocity hailstone impact

Funds: 

Postgraduate Research & Practice Innovation Program of Jiangsu Province KYCX20-3076

Natural Science Foundation of Jiangsu Province BK20180855

Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures MCMS-E-0219Y01

More Information
  • 摘要:

    针对冰雹冲击对复合材料结构安全造成的潜在风险,提出了一种基于连续介质损伤力学的非线性有限元模型,研究了碳纤维复合材料层板冰雹高速冲击力学行为。综合采用拉格朗日法和光滑粒子流体动力学(SPH)法对冰雹进行建模,引入水的状态方程描述冰雹破碎后的流动特性;考虑应变率的单向复合材料本构模型,根据三维Hashin失效准则及材料刚度折减方案,进行复合材料层内损伤预测;引入界面单元结合双线性内聚力模型模拟层间分层现象;编写用户材料VUMAT子程序,实现基于ABAQUS/Explicit显式模块的数值求解。模拟了冰雹高速冲击复合材料层板的瞬态过程,分析了材料的损伤特性和失效机理。探讨了冰雹冲击速度、冲击角度对层板冲击损伤性能的影响,为复合材料结构冰雹冲击问题数值分析提供参考。

     

  • 图 1  冰雹高速冲击复合材料层板实验装置及有限元模型

    Figure 1.  Experimental device and finite element model of composite laminates under high-velocity hailstone impact

    图 2  [0°/90°]4S层板实验[6]与模拟宏观损伤对比

    Figure 2.  Comparison of macroscopic damage of [0°/90°]4S laminates between experiment[6] and simulation

    图 3  [0°/90°]4S层板分层情况实验[6]与模拟对比

    Figure 3.  Comparison of delamination of [0°/90°]4S laminates between experiment[6] and simulation

    图 4  [0°/45°/90°/-45°]2S层板分层情况实验[6]与模拟对比

    Figure 4.  Comparison of delamination of [0°/45°/90°/-45°]2S laminates between experiment[6]and simulation

    图 5  206 m/s冰雹冲击速度下[0°/90°]4S复合材料层板动态过程

    Figure 5.  Dynamic process of [0°/90°]4S composite laminates under hailstone impact at velocity of 206 m/s

    图 6  两种典型层板分层面积随时间变化历程

    Figure 6.  Evolution of delamination area of two typical laminates with time

    图 7  206 m/s冰雹冲击速度下层板典型层基体拉伸损伤分布

    Figure 7.  Distribution of matrix tensile damage in typical layers of laminates under hailstone impact at velocity of 206 m/s

    图 8  206 m/s冰雹冲击速度下层板典型层纤维断裂损伤分布

    Figure 8.  Distribution of fiber breaking damage in typical layers of laminates under hailstone impact at velocity of 206 m/s

    图 9  冲击速度和冲击角度对最大冲击力的影响

    Figure 9.  Influence of impact velocity and impact angle on maximum impact force

    图 10  冲击速度和冲击角度对分层面积的影响

    Figure 10.  Influence of impact velocity and impact angle on delamination area

    表  1  材料刚度折减方案

    Table  1.   Material stiffness reduction scheme

    失效模式 刚度折减系数
    Ef1 Ef2 Gf12 Gf23 Em Gm
    纤维拉伸失效 0.01 0.2 0.01 1 1 1
    纤维压缩失效 0.01 0.2 0.01 1 1 1
    基体拉伸失效 1 0.2 0.2 0.2 0.01 0.01
    基体压缩失效 1 0.2 0.2 0.2 0.01 0.01
    下载: 导出CSV

    表  2  Gruneisen状态方程参数[12]

    Table  2.   Parameters of Gruneisen state equation[12]

    参数 数值
    C/(cm·μs-1) 0.148
    S1 2.559
    S2 -1.98
    S3 0.228
    γ0 0.493
    a 1.39
    E 2.895×10-6
    V/(Pa·S) 10-3
    下载: 导出CSV

    表  3  冰雹基本力学性能参数[18]

    Table  3.   Basic mechanical performance parameters of hailstone[18]

    参数 数值
    密度/(kg·m-3) 900
    弹性模量/MPa 9 380
    剪切模量/MPa 3 460
    泊松比 0.33
    压缩屈服强度/MPa 5.2
    拉伸失效应力/MPa 0.517
    下载: 导出CSV

    表  4  基于应变率的冰雹屈服强度[14]

    Table  4.   Strain rate based yield strengths of hailstone[14]

    应变率/s-1 屈服因子 应变率/s-1 屈服因子
    0 1 500 3.62
    0.1 1.01 103 3.84
    0.5 1.5 5×103 4.33
    1 1.71 104 4.55
    5 2.2 5×104 5.04
    10 2.42 105 5.25
    50 2.91 5×105 5.75
    100 3.13 106 5.96
    下载: 导出CSV

    表  5  界面单元材料参数[19-20]

    Table  5.   Material parameters of interface element[19-20]

    参数 数值
    密度/(kg·m-3) 1 440
    K/(N·mm-3) 1×106
    N/MPa 30
    S=T/MPa 75
    GIC/(N·mm-1) 0.3
    GⅡC=GⅢC/(N·mm-1) 0.6
    下载: 导出CSV

    表  6  单向复合材料的材料参数[6, 15, 21]

    Table  6.   Material parameters of unidirectional composite[6, 15, 21]

    参数 数值 参数 数值
    Ef1/GPa 230 G2/GPa 0.041
    Ef2=Ef3/GPa 15 θg2/ms 12 000
    Gf12=Gf13/GPa 2.35 ρ/(kg·m-3) 1 570
    Gf23/GPa 24 Vf 0.6
    Em/GPa 2.31 μ12=μ13 0.25
    E1/GPa 0.971 μ23 0.38
    θe1/ms 0.041 ξ 0.1
    E2/GPa 0.104 XT/MPa 2 100
    θe2/ms 121 000 XC/MPa 1 050
    Gm/GPa 0.857 YT/MPa 71
    G1/GPa 0.401 YC/MPa 132
    θg1/ms 0.077 S/MPa 75
    下载: 导出CSV
  • [1] 张超. 三维多向编织复合材料宏细观力学性能及高速冲击损伤研究[D]. 南京: 南京航空航天大学, 2013.

    ZHANG C. Research on macro-meso-mechanical properties and high velocity impact damage of 3D multi-directional braided composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
    [2] 朱倩. 纤维金属层板抗高速冲击性能及损伤机理研究[D]. 镇江: 江苏大学, 2020.

    ZHU Q. Study on impact resistance and damage mechanism of fiber metal laminates under high velocity impact[D]. Zhenjiang: Jiangsu University, 2020(in Chinese).
    [3] KIM H, KEDWARD K T. Modeling hail ice impacts and predicting impact damage initiation in composite structures[J]. AIAA Journal, 2000, 38(7): 1278-1288. doi: 10.2514/2.1099
    [4] RHYMER J D. Force criterion prediction of damage for carbon/epoxy composite panels impacted by high velocity ice[D]. San Diego: University of California, 2012.
    [5] TANG E L, WANG J R, HAN Y F, et al. Microscopic damage modes and physical mechanisms of CFRP laminates impacted by ice projectile at high velocity[J]. Journal of Materials Research and Technology, 2019, 8(6): 5671-5686. doi: 10.1016/j.jmrt.2019.09.035
    [6] 廖光兰. 冰高速冲击作用下复合材料层合板的动态响应及损伤研究[D]. 南京: 南京航空航天大学, 2018.

    LIAO G L. The dynamic response and damage research of laminates according to the high velocity ice impact[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
    [7] COLES L A, ROY A, SILBERSCHMIDT V V. Ice vs. steel: Ballistic impact of woven carbon/epoxy composites. Part Ⅱ: Numerical modelling[J]. Engineering Fracture Mechanics, 2020, 225: 106297. doi: 10.1016/j.engfracmech.2018.12.030
    [8] PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J A, LÓPEZ-PUENTE J, et al. Numerical methodology to analyze the ice impact threat: Application to composite structures[J]. Materials & Design, 2018, 141: 350-360.
    [9] 周逃林. 层合复合材料冰雹和硬物冲击损伤研究[D]. 南京: 南京航空航天大学, 2019.

    ZHOU T L. Study on damage of composite laminate experienced impactions of hail and rigid impactor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019(in Chinese).
    [10] 王计真. 复合材料层合板抗冰雹冲击性能研究[J]. 兵工学报, 2017, 38(S1): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2017S1012.htm

    WANG J Z. Research on anti-hailstone impact behavior of laminated composite panel[J]. Acta Armamentarii, 2017, 38(S1): 89-95(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2017S1012.htm
    [11] 张晓晴, 丁铁, 龙舒畅, 等. 复合材料加筋壁板的抗冰雹冲击动力响应及损伤预测[J]. 华南理工大学学报(自然科学版), 2017, 45(5): 120-128. doi: 10.3969/j.issn.1000-565X.2017.05.017

    ZHANG X Q, DING T, LONG S C, et al. Dynamic response and damage prediction of composite stiffened panel under hail impact[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(5): 120-128(in Chinese). doi: 10.3969/j.issn.1000-565X.2017.05.017
    [12] DOLATI S H, REZAEEPAZHAND J, SHARIATI M. Numerical simulation of hail impact response of hybrid corrugated core sandwich panels[J]. Journal of Reinforced Plastics and Composites, 2019, 38(14): 643-657. doi: 10.1177/0731684419838332
    [13] CARNEY K S, BENSON D J, DUBOIS P, et al. A phenomenological high strain rate model with failure for ice[J]. International Journal of Solids and Structures, 2006, 43(25-26): 7820-7839. doi: 10.1016/j.ijsolstr.2006.04.005
    [14] TIPPMANN J D. Development of a strain rate sensitive ice material model for hail ice impact simulation[D]. San Diego: University of California, 2011.
    [15] KARIM M R, FATT M S H. Rate-dependent constitutive equations for carbon fiber-reinforced epoxy[J]. Polymer Composites, 2006, 27(5): 513-528. doi: 10.1002/pc.20221
    [16] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. doi: 10.1115/1.3153664
    [17] CAMANHO P P, DAVILA C G, DE MOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37(16): 1415-1438. doi: 10.1177/0021998303034505
    [18] TIPPMANN J D, KIM H, RHYMER J D. Experimentally validated strain rate dependent material model for spherical ice impact simulation[J]. International Journal of Impact Engineering, 2013, 57: 43-54. doi: 10.1016/j.ijimpeng.2013.01.013
    [19] ZHANG C, CURIEL-SOSA J L, BUI T Q. A novel interface constitutive model for prediction of stiffness and strength in 3D braided composites[J]. Composite Structures, 2017, 163: 32-43. doi: 10.1016/j.compstruct.2016.12.042
    [20] 莫袁鸣, 赵振华, 罗刚, 等. 复合材料层合板冰雹冲击损伤研究[J]. 重庆理工大学学报(自然科学), 2020, 34(3): 112-121. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202003018.htm

    MO Y M, ZHAO Z H, LUO G, et al. Investigation on damage of composite laminates subject to hail impact[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(3): 112-121(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202003018.htm
    [21] WANG S X, WU L Z, MA L. Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates[J]. Materials & Design, 2010, 31(1): 118-125.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  585
  • HTML全文浏览量:  105
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-15
  • 录用日期:  2021-03-12
  • 网络出版日期:  2022-04-20

目录

    /

    返回文章
    返回
    常见问答