留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共轴刚性旋翼悬停状态桨叶表面压力测量试验与计算研究

江露生 曹亚雄 刘婷 樊枫

江露生, 曹亚雄, 刘婷, 等 . 共轴刚性旋翼悬停状态桨叶表面压力测量试验与计算研究[J]. 北京航空航天大学学报, 2021, 47(12): 2484-2493. doi: 10.13700/j.bh.1001-5965.2020.0669
引用本文: 江露生, 曹亚雄, 刘婷, 等 . 共轴刚性旋翼悬停状态桨叶表面压力测量试验与计算研究[J]. 北京航空航天大学学报, 2021, 47(12): 2484-2493. doi: 10.13700/j.bh.1001-5965.2020.0669
JIANG Lusheng, CAO Yaxiong, LIU Ting, et al. Experimental and computational study on blade surface pressure measurement of coaxial rigid rotor in hovering state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2484-2493. doi: 10.13700/j.bh.1001-5965.2020.0669(in Chinese)
Citation: JIANG Lusheng, CAO Yaxiong, LIU Ting, et al. Experimental and computational study on blade surface pressure measurement of coaxial rigid rotor in hovering state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2484-2493. doi: 10.13700/j.bh.1001-5965.2020.0669(in Chinese)

共轴刚性旋翼悬停状态桨叶表面压力测量试验与计算研究

doi: 10.13700/j.bh.1001-5965.2020.0669
详细信息
    通讯作者:

    江露生, E-mail: jiangls@avic.com

  • 中图分类号: V211.52

Experimental and computational study on blade surface pressure measurement of coaxial rigid rotor in hovering state

More Information
  • 摘要:

    针对共轴刚性模型旋翼悬停状态,开展了桨叶表面压力测量试验与数值模拟研究。试验采用微型压力传感器进行桨叶表面压力测量,不仅获得了桨叶表面压力的试验数据,同时为CFD计算方法计算桨叶表面压力提供了验证数据。计算与试验结果对比吻合度良好,验证了CFD计算方法的有效性。研究获得了共轴刚性旋翼上下旋翼桨叶表面的流动情况和压力特性,结果表明:对于上下各4片桨叶的共轴刚性旋翼,桨叶表面压力随着桨叶旋转呈周期性变化,旋转一周出现8个小周期;在上下旋翼扭矩配平的悬停状态,下旋翼桨叶大部分区域受下洗流影响,下旋翼剖面拉力低于上旋翼;在桨尖区域,下旋翼的桨距角大于上旋翼,受各自上洗流的影响,下旋翼剖面拉力高于上旋翼。

     

  • 图 1  试验台及试验模型

    Figure 1.  Experimental station and experimental model

    图 2  无线遥测装置

    Figure 2.  Wireless telemetry device

    图 3  微型压力传感器

    Figure 3.  Micro pressure sensor

    图 4  剖面位置示意图

    Figure 4.  Schematic diagram of profile location

    图 5  共轴双旋翼嵌套网格

    Figure 5.  Coaxial dual-rotor overset grids

    图 6  桨叶表面压力系数计算与试验对比曲线(Cw=0.016 3)

    Figure 6.  Comparison of blade surface pressure coefficient between calculation and experiment (Cw=0.016 3)

    图 7  桨叶0.5R剖面压力系数计算与试验对比曲线(Cw=0.010 2)

    Figure 7.  Comparison of pressure coefficient of 0.5R blade profile between calculation and experiment (Cw=0.010 2)

    图 8  桨叶0.8R剖面压力系数计算与试验对比曲线(Cw=0.010 2)

    Figure 8.  Comparison of pressure coefficient of 0.8R blade profile between calculation and experiment (Cw=0.010 2)

    图 9  桨叶0.8R剖面测压点压力系数随方位角变化曲线(试验值)

    Figure 9.  Pressure coefficient variation with azimuth angle at pressure measuring point of 0.8R blade profile(experiment value)

    图 10  桨叶0.5R剖面测压点压力系数随方位角变化曲线(试验值)

    Figure 10.  Pressure coefficient variation with azimuth angle at pressure measuring point of 0.5R blade profile(experiment value)

    图 11  配平状态桨盘拉力分布

    Figure 11.  Distribution of disc traction in trimmed state

    图 12  上下旋翼轴向诱导速度云图(180°方位角)

    Figure 12.  Axial induced velocity contour of upper and lower rotor (180° azimuth angle)

    图 13  上下旋翼剖面压力云图(180°方位角)

    Figure 13.  Profile pressure contour of upper and lower rotor (180° azimuth angle)

    图 14  不同剖面位置压力系数分布(180°方位角)

    Figure 14.  Pressure coefficient distribution at different profile positions (180° azimuth angle)

    图 15  不同弦向位置点压力系数随方位角变化曲线(Cw=0.016 3)

    Figure 15.  Pressure coefficient variation with azimuth angle at different chordwise positions (Cw=0.016 3)

    图 16  同总距角状态桨盘拉力分布

    Figure 16.  Distribution of disc traction at the same total pitch angle

    图 17  同总距角状态拉力系数随方位角变化曲线

    Figure 17.  Traction coefficient variation with azimuth angle at the same total pitch angle

    图 18  同总距角状态不同剖面位置压力系数分布(180°方位角)

    Figure 18.  Pressure coefficient distribution at different profile positions at the same total pitch angle (180° azimuth angle)

    图 19  剖面点压力系数随方位角变化曲线

    Figure 19.  Pressure coefficient variation with azimuth angle at profile measuring point

    表  1  旋翼参数

    Table  1.   Rotor parameters

    参数 数值
    桨毂半径/mm 272
    桨叶片数 4+4
    旋翼旋转方向 上旋翼:逆时针; 下旋翼:顺时针
    旋翼半径R/m 2
    旋翼转速N/(r·min-1) 778
    旋翼间距 0.15R
    翼型 OA3/4系列
    下载: 导出CSV
  • [1] 吴希明. 高速直升机发展现状、趋势与对策[J]. 南京航空航天大学学报2015, 47(2): 173-179. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201502002.htm

    WU X M. Current status, development trend and countermeasure for high-speed rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 173-179(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201502002.htm
    [2] GREG L P, ANGSHUMAN B S. JMR development[C]//American Helicopter Society 72th Annual Forum, 2016: 389-399.
    [3] 邓景辉. 高速直升机前行桨叶概念旋翼技术[J]. 航空科学技术, 2012(3): 9-14. doi: 10.3969/j.issn.1007-5453.2012.03.003

    DENG J H. The ABC rotor technology for high speed helicopter[J]. Aeronautical Science & Technology, 2012(3): 9-14(in Chinese). doi: 10.3969/j.issn.1007-5453.2012.03.003
    [4] RUDDELL J A, MACRINO J A. Advancing blade concept(ABC)TM high speed development[C]// American Helicopter Society 36th Annual Forum, 1980: 1-13.
    [5] PAGLINO V M, BENO E A. Full-scale wind tunnel investigation of the advancing blade concept rotor system[R]. United Aircraft Corp Stratford Conn Sikorsky Aircraft Div, 1971: 1-13.
    [6] KIM H W, KENYON A R, BROWN R E, et al. Interactional aerodynamics and acoustics of a hingeless coaxial helicopter with an auxiliary propeller in forward flight[J]. Aeronautical Journal, 2009, 113(1140): 65-78. doi: 10.1017/S0001924000002797
    [7] WALSH G, JACOBELLIS G. An acoustic investigation of a coaxial helicopter in high-speed flight[C] //American Helicopter Society 72th Annual Forum, 2016: 322-354.
    [8] SCHATZMAN N L. Aerodynamics and aeroacoustic sources of a coaxial rotor[D]. Atlanta: Georgia Institute of Technology, 2018: 67-90.
    [9] SHAMA K, BRENTNER K S, JIA Z, et al. Aeroacoustic study of lift offset coaxial rotor using free wake analysis[C] //American Helicopter Society 75th Annual Forum, 2019: 400-417.
    [10] LORBER P, LAW G, O'NEILL J, et al. Overview of S-97 RAIDRTM scale modle tests[C] //American Helicopter Society 72th Annual Forum, 2016: 143-160.
    [11] 张昆. 基于CFD方法的高速直升机共轴刚性双旋翼的气动特性研究[D]. 南京: 南京航空航天大学. 2012: 74-84.

    ZHANG K. Researches on aerodynamic characteristics of rigid coaxial rotor of high-speed helicopter based on CFD method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 74-84(in Chinese).
    [12] 叶靓, 徐国华. 共轴式双旋翼悬停流场和气动力的CFD计算[J]. 空气动力学学报, 2012, 30(4): 437-442. doi: 10.3969/j.issn.0258-1825.2012.04.003

    YE L, XU G H. Calculation on flow field and aerodynamic force of coaxial rotors in hover with CFD method [J]. Acta Aerodynamica Sinica, 2012, 30(4): 437-442(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.04.003
    [13] 谭剑锋, 孙义鸣, 王浩文, 等. 共轴刚性双旋翼非定常气动干扰载荷分析[J]. 北京航空航天大学学报, 2018, 44(1): 50-62. doi: 10.13700/j.bh.1001-5965.2017.0033

    TAN J F, SUN Y M, WANG H W, et al. Analysis of rigid coaxial rotor unsteady interactional aerodynamic loads[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 50-62(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0033
    [14] 吴希明, 祁浩天, 马率, 等. 共轴刚性旋翼气动干扰数值计算方法研究[J]. 南京航空航天大学学报, 2019, 51(2): 147-153. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201902003.htm

    WU X M, QI H T, MA S, et al. Research on numerical method of coaxial rigid rotor aerodynamic interaction[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 147-153(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201902003.htm
    [15] DENG J H, FAN F, LIU P A, et al. Aerodynamic characteristics of rigid coaxial rotor by wind tunnel test and numerical calculation[J]. Chinese Journal of Aeronautics, 2019, 32(3): 568-576. http://www.sciencedirect.com/science/article/pii/S1000936119300421
    [16] 杨永飞, 林永峰, 樊枫, 等, 共轴刚性旋翼流场测量试验研究[J]. 南京航空航天大学学报, 2019, 51(2): 178-187. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201902008.htm

    YANG Y F, LIN Y F, FAN F, et al. Flow field measurement investigation on rigid coaxial rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 178-187(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201902008.htm
    [17] 章贵川, 彭先敏, 车兵辉, 等. 共轴刚性旋翼试验自动配平技术研究[J]. 南京航空航天大学学报, 2019, 51(2): 227-232. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201902015.htm

    ZHANG G C, PENG X M, CHE B H, et al. Research on automatic trim technology of coaxial rigid rotor test[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 227-232(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201902015.htm
    [18] 樊枫. 直升机非定常干扰流场与声场的计算方法研究及应用[D]. 南京: 南京航空航天大学, 2013: 25-59.

    FAN F. Research on numerical methods for unsteady interaction flowfield and aerocoustics of helicopters and their applications[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 25-59(in Chinese).
    [19] QI H T, XU G H, LU C, et al. A study of coaxial rotor aerodynamic interaction mechanism in hover with high-efficient trim model[J]. Aerospace Science and Technology, 2019, 84: 1116-1130. http://www.onacademic.com/detail/journal_1000041581724899_29d8.html
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  78
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 录用日期:  2021-01-08
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答