-
摘要:
为了更好地了解细长旋成体背部绕流非对称涡的形成机理,研究了头部带扰动块对细长旋成体背部绕流结构的影响,通过雷诺平均Navier-Stokes(RANS)法对细长旋成体模型在攻角5°~60°范围内进行仿真。在攻角分别为20°和30°时对是否添加扰动块模型进行对比,分析了不同截面绕流沿轴向位置的发展,提出了验证拓扑结构的一种方法,找到了各流态下奇点的位置,通过涡核位置对模型背部绕流的发展进行了分析。研究表明:添加已知规则扰动块可以加快各绕流结构间的转换速度,使非对称涡产生的攻角减小。
Abstract:In this paper, the influence of the head disturbance block on the structure of the flow around the back of the slender body is studied. The slender body model is simulated at the angle of attack of 5°-60° through numerical simulation. The numerical calculation method selected is the Reynolds Average Navier-Stokes (RANS) method. This paper mainly compares whether to add a disturbance block model at an angle of attack of
α =20°, 30°, analyzes the development of the flow around different sections along with the axial position, proposes a method to verify the topological structure, and finds the position of the singularity in each flow state. The position of the vortex core is used to analyze the development of the flow around the back of the model. It is found that the premise of adding a known regular disturbance block can speed up the conversion speed between the surrounding flow structures, and will reduce the angle of attack generated by the asymmetric vortex.-
Key words:
- surrounding flow structure /
- slender body /
- asymmetric flow /
- saddle point /
- topological structure
-
[1] ZILLIAC G G, DEGANI D, TOBAK M. Asymmetric vortices on a slender body of revolution[J]. AIAA Journal, 1991, 29(5): 667-675. doi: 10.2514/3.59934 [2] BANKS D W, FISHER D F, HALL R M, et al. The F/A-18 high-angle-of-attack ground-to-flight correlation: Lessons learned: NASA-TM-4783[R]. Washington, D.C. : NASA, 1997. [3] RIZZETTA D P, VISBAL M R, STANEK M J. Numerical investigation of synthetic-jet flowfields[J]. AIAA Journal, 1999, 37(8): 919-927. doi: 10.2514/2.811 [4] FAGLEY C, PORTER C, MCLAUGHLIN T. Experimental closed-loop flow control of a von kármán ogive at high incidence[J]. AIAA Journal, 2014, 52(12): 2891-2898. doi: 10.2514/1.J053012 [5] 贺中, 吴军强, 蒋卫民, 等. 高速下模型头部扰动与非对称涡流动响应研究[J]. 实验流体力学, 2013, 27(6): 6-13. doi: 10.3969/j.issn.1672-9897.2013.06.002HE Z, WU J Q, JIANG W M, et al. Investigation on response between model tip perturbation and asymmetric vortex flow over slender body in high speed[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6): 6-13(in Chinese). doi: 10.3969/j.issn.1672-9897.2013.06.002 [6] 贺中, 吴军强, 蒋卫民, 等. 细长体大迎角非对称流动的高速PIV风洞试验研究[J]. 空气动力学学报, 2014, 32(3): 295-299. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201403004.htmHE Z, WU J Q, JIANG W M, et al. Study on asymmetric flow over slender body at high angles of attack via particle image velocimetry test in high speed wind tunnel[J]. Acta Aerodynamica Sinica, 2014, 32(3): 295-299(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201403004.htm [7] WU M, YUE H H, CAO M J, et al. Research on forebody active disturbed flow characteristics of slender body in supersonic field[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(9): 431. doi: 10.1007/s40430-018-1325-z [8] MURMAN S. Geometric perturbations and asymmetric vortex shedding about slender pointed bodies[C]//Atmospheric Flight Mechanics Conference. Reston: AIAA, 2000: 4103. [9] KUMAR P, PRASAD J K. Mechanism of side force generation and its alleviation over a slender body[J]. Journal of Spacecraft and Rockets, 2016, 53(1): 195-208. doi: 10.2514/1.A33290 [10] MA B F, HUANG Y, LIU T X. Low-frequency unsteadiness of vortex wakes over slender bodies at high angle of attack[J]. Chinese Journal of Aeronautics, 2014, 27(4): 772-780. doi: 10.1016/j.cja.2014.06.011 [11] MOSKOVITZ C, DEJARNETTE F, HALL R. Effects of surface perturbations on the asymmetric vortex flow over a slender body[C]//26th Aerospace Sciences Meeting. Reston: AIAA, 1988. [12] ZHU Y D, YUAN H J, LEE C. Experimental investigations of the initial growth of flow asymmetries over a slender body of revolution at high angles of attack[J]. Physics of Fluids, 2015, 27(8): 084103. doi: 10.1063/1.4928313 [13] 李国辉, 邓学蓥. 细长体截面绕流中的一种临界状态[J]. 应用数学和力学, 2005, 26(1): 25-31. doi: 10.3321/j.issn:1000-0887.2005.01.004LI G H, DENG X Y. A critical pattern of crossflow around a slender[J]. Applied Mathematics and Mechanics, 2005, 26(1): 25-31(in Chinese). doi: 10.3321/j.issn:1000-0887.2005.01.004 [14] 刘跃, 管小荣, 徐诚. 不同SST模式在细长体绕流模拟中的应用比较[J]. 工程力学, 2016, 33(11): 240-248. doi: 10.6052/j.issn.1000-4750.2015.03.0247LIU Y, GUAN X R, XU C. Comparison amongst different shear-stress transport models in simulating the flow field over a slender body[J]. Engineering Mechanics, 2016, 33(11): 240-248(in Chinese). doi: 10.6052/j.issn.1000-4750.2015.03.0247 [15] 邓学蓥, 王刚, 陈学锐, 等. 细长旋成体大迎角正则态非对称涡系结构的物理模型[J]. 中国科学E辑: 技术科学, 2004, 34(1): 79-93. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200401008.htmDENG X Y, WANG G, CHEN X R, et al. Physical model of asymmetrical vortex structure of slender body at high angle of attack[J]. Science in China Ser. E: Technological Sciences, 2004, 34(1): 79-93(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200401008.htm [16] 张浩南, 李国辉, 徐宇. 尖拱细长旋成体低速大攻角绕流数值模拟[J/OL]. 兵器装备工程学报, 2020(2020-10-28)[2020-12-01]. http://kns.cnki.net/kcms/detail/50.1213.TJ.20201028.1326.002.html.ZHANG H N, LI G H, XU Y. Numerical simulation of flow around a pointed arch slender body at low speed and high angle of attack[J/OL]. Journal of Ordnance Equipment Engineering, 2020(2020-10-28)[2020-12-01]. http://kns.cnki.net/kcms/detail/50.1213.TJ.20201028.1326.002.html. (in Chinese). [17] 孟轩, 陈志敏, 姚伟刚. 细长体非对称涡流动及侧向力分析研究[J]. 弹箭与制导学报, 2007, 27(2): 219-221. doi: 10.3969/j.issn.1673-9728.2007.02.069MENG X, CHEN Z M, YAO W G. Investigation of asymmetrical flow and side force around slender body[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(2): 219-221(in Chinese). doi: 10.3969/j.issn.1673-9728.2007.02.069 [18] LOWSON M V, PONTON A J C. Symmetry breaking in vortex flows on conical bodies[J]. AIAA Journal, 1992, 30(6): 1576-1583. doi: 10.2514/3.11103