留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带扰动块的细长旋成体背部绕流数值模拟

刘克奇 李国辉 张浩南 张宴嘉

刘克奇, 李国辉, 张浩南, 等 . 带扰动块的细长旋成体背部绕流数值模拟[J]. 北京航空航天大学学报, 2021, 47(7): 1495-1504. doi: 10.13700/j.bh.1001-5965.2020.0676
引用本文: 刘克奇, 李国辉, 张浩南, 等 . 带扰动块的细长旋成体背部绕流数值模拟[J]. 北京航空航天大学学报, 2021, 47(7): 1495-1504. doi: 10.13700/j.bh.1001-5965.2020.0676
LIU Keqi, LI Guohui, ZHANG Haonan, et al. Numerical simulation of flow around slender body with disturbing block[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1495-1504. doi: 10.13700/j.bh.1001-5965.2020.0676(in Chinese)
Citation: LIU Keqi, LI Guohui, ZHANG Haonan, et al. Numerical simulation of flow around slender body with disturbing block[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1495-1504. doi: 10.13700/j.bh.1001-5965.2020.0676(in Chinese)

带扰动块的细长旋成体背部绕流数值模拟

doi: 10.13700/j.bh.1001-5965.2020.0676
详细信息
    通讯作者:

    李国辉, E-mail: ghleeauaf@sina.com

  • 中图分类号: V221;TJ760

Numerical simulation of flow around slender body with disturbing block

More Information
  • 摘要:

    为了更好地了解细长旋成体背部绕流非对称涡的形成机理,研究了头部带扰动块对细长旋成体背部绕流结构的影响,通过雷诺平均Navier-Stokes(RANS)法对细长旋成体模型在攻角5°~60°范围内进行仿真。在攻角分别为20°和30°时对是否添加扰动块模型进行对比,分析了不同截面绕流沿轴向位置的发展,提出了验证拓扑结构的一种方法,找到了各流态下奇点的位置,通过涡核位置对模型背部绕流的发展进行了分析。研究表明:添加已知规则扰动块可以加快各绕流结构间的转换速度,使非对称涡产生的攻角减小。

     

  • 图 1  尖拱-圆柱形细长旋成体模型

    Figure 1.  Pointed arch-cylindrical elongated slender body model

    图 2  计算域及网格划分

    Figure 2.  Computational domain and mesh division

    图 3  截面侧向力系数对比

    Figure 3.  Comparison of lateral force coefficients

    图 4  平均x涡量等值线

    Figure 4.  Mean x vorticity contour

    图 5  截面侧向力系数曲线

    Figure 5.  Cross-section lateral force coefficient curves

    图 6  物面压力轴向分布曲线

    Figure 6.  Axial distribution curves of surface pressure

    图 7  速度矢量分布

    Figure 7.  Velocity vector distribution

    图 8  细长旋成体绕流拓扑结构

    Figure 8.  Topological structure of flow around slender body

    图 9  壁面切向速度曲线

    Figure 9.  Tangential speed curves

    图 10  空间鞍点的纵向与横向位置

    Figure 10.  Vertical and horizontal positions of saddle point in space

    图 11  涡核位置

    Figure 11.  Vortex core position

  • [1] ZILLIAC G G, DEGANI D, TOBAK M. Asymmetric vortices on a slender body of revolution[J]. AIAA Journal, 1991, 29(5): 667-675. doi: 10.2514/3.59934
    [2] BANKS D W, FISHER D F, HALL R M, et al. The F/A-18 high-angle-of-attack ground-to-flight correlation: Lessons learned: NASA-TM-4783[R]. Washington, D.C. : NASA, 1997.
    [3] RIZZETTA D P, VISBAL M R, STANEK M J. Numerical investigation of synthetic-jet flowfields[J]. AIAA Journal, 1999, 37(8): 919-927. doi: 10.2514/2.811
    [4] FAGLEY C, PORTER C, MCLAUGHLIN T. Experimental closed-loop flow control of a von kármán ogive at high incidence[J]. AIAA Journal, 2014, 52(12): 2891-2898. doi: 10.2514/1.J053012
    [5] 贺中, 吴军强, 蒋卫民, 等. 高速下模型头部扰动与非对称涡流动响应研究[J]. 实验流体力学, 2013, 27(6): 6-13. doi: 10.3969/j.issn.1672-9897.2013.06.002

    HE Z, WU J Q, JIANG W M, et al. Investigation on response between model tip perturbation and asymmetric vortex flow over slender body in high speed[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6): 6-13(in Chinese). doi: 10.3969/j.issn.1672-9897.2013.06.002
    [6] 贺中, 吴军强, 蒋卫民, 等. 细长体大迎角非对称流动的高速PIV风洞试验研究[J]. 空气动力学学报, 2014, 32(3): 295-299. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201403004.htm

    HE Z, WU J Q, JIANG W M, et al. Study on asymmetric flow over slender body at high angles of attack via particle image velocimetry test in high speed wind tunnel[J]. Acta Aerodynamica Sinica, 2014, 32(3): 295-299(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201403004.htm
    [7] WU M, YUE H H, CAO M J, et al. Research on forebody active disturbed flow characteristics of slender body in supersonic field[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(9): 431. doi: 10.1007/s40430-018-1325-z
    [8] MURMAN S. Geometric perturbations and asymmetric vortex shedding about slender pointed bodies[C]//Atmospheric Flight Mechanics Conference. Reston: AIAA, 2000: 4103.
    [9] KUMAR P, PRASAD J K. Mechanism of side force generation and its alleviation over a slender body[J]. Journal of Spacecraft and Rockets, 2016, 53(1): 195-208. doi: 10.2514/1.A33290
    [10] MA B F, HUANG Y, LIU T X. Low-frequency unsteadiness of vortex wakes over slender bodies at high angle of attack[J]. Chinese Journal of Aeronautics, 2014, 27(4): 772-780. doi: 10.1016/j.cja.2014.06.011
    [11] MOSKOVITZ C, DEJARNETTE F, HALL R. Effects of surface perturbations on the asymmetric vortex flow over a slender body[C]//26th Aerospace Sciences Meeting. Reston: AIAA, 1988.
    [12] ZHU Y D, YUAN H J, LEE C. Experimental investigations of the initial growth of flow asymmetries over a slender body of revolution at high angles of attack[J]. Physics of Fluids, 2015, 27(8): 084103. doi: 10.1063/1.4928313
    [13] 李国辉, 邓学蓥. 细长体截面绕流中的一种临界状态[J]. 应用数学和力学, 2005, 26(1): 25-31. doi: 10.3321/j.issn:1000-0887.2005.01.004

    LI G H, DENG X Y. A critical pattern of crossflow around a slender[J]. Applied Mathematics and Mechanics, 2005, 26(1): 25-31(in Chinese). doi: 10.3321/j.issn:1000-0887.2005.01.004
    [14] 刘跃, 管小荣, 徐诚. 不同SST模式在细长体绕流模拟中的应用比较[J]. 工程力学, 2016, 33(11): 240-248. doi: 10.6052/j.issn.1000-4750.2015.03.0247

    LIU Y, GUAN X R, XU C. Comparison amongst different shear-stress transport models in simulating the flow field over a slender body[J]. Engineering Mechanics, 2016, 33(11): 240-248(in Chinese). doi: 10.6052/j.issn.1000-4750.2015.03.0247
    [15] 邓学蓥, 王刚, 陈学锐, 等. 细长旋成体大迎角正则态非对称涡系结构的物理模型[J]. 中国科学E辑: 技术科学, 2004, 34(1): 79-93. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200401008.htm

    DENG X Y, WANG G, CHEN X R, et al. Physical model of asymmetrical vortex structure of slender body at high angle of attack[J]. Science in China Ser. E: Technological Sciences, 2004, 34(1): 79-93(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200401008.htm
    [16] 张浩南, 李国辉, 徐宇. 尖拱细长旋成体低速大攻角绕流数值模拟[J/OL]. 兵器装备工程学报, 2020(2020-10-28)[2020-12-01]. http://kns.cnki.net/kcms/detail/50.1213.TJ.20201028.1326.002.html.

    ZHANG H N, LI G H, XU Y. Numerical simulation of flow around a pointed arch slender body at low speed and high angle of attack[J/OL]. Journal of Ordnance Equipment Engineering, 2020(2020-10-28)[2020-12-01]. http://kns.cnki.net/kcms/detail/50.1213.TJ.20201028.1326.002.html. (in Chinese).
    [17] 孟轩, 陈志敏, 姚伟刚. 细长体非对称涡流动及侧向力分析研究[J]. 弹箭与制导学报, 2007, 27(2): 219-221. doi: 10.3969/j.issn.1673-9728.2007.02.069

    MENG X, CHEN Z M, YAO W G. Investigation of asymmetrical flow and side force around slender body[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(2): 219-221(in Chinese). doi: 10.3969/j.issn.1673-9728.2007.02.069
    [18] LOWSON M V, PONTON A J C. Symmetry breaking in vortex flows on conical bodies[J]. AIAA Journal, 1992, 30(6): 1576-1583. doi: 10.2514/3.11103
  • 加载中
图(11)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  46
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 录用日期:  2021-01-30
  • 网络出版日期:  2021-07-20

目录

    /

    返回文章
    返回
    常见问答