留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卷积神经网络卫星信号自动调制识别算法

崔天舒 崔凯 黄永辉 赵文杰 安军社

崔天舒, 崔凯, 黄永辉, 等 . 卷积神经网络卫星信号自动调制识别算法[J]. 北京航空航天大学学报, 2022, 48(6): 986-994. doi: 10.13700/j.bh.1001-5965.2020.0711
引用本文: 崔天舒, 崔凯, 黄永辉, 等 . 卷积神经网络卫星信号自动调制识别算法[J]. 北京航空航天大学学报, 2022, 48(6): 986-994. doi: 10.13700/j.bh.1001-5965.2020.0711
CUI Tianshu, CUI Kai, HUANG Yonghui, et al. Convolutional neural network based algorithm for automatic modulation recognition of satellite signals[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 986-994. doi: 10.13700/j.bh.1001-5965.2020.0711(in Chinese)
Citation: CUI Tianshu, CUI Kai, HUANG Yonghui, et al. Convolutional neural network based algorithm for automatic modulation recognition of satellite signals[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 986-994. doi: 10.13700/j.bh.1001-5965.2020.0711(in Chinese)

卷积神经网络卫星信号自动调制识别算法

doi: 10.13700/j.bh.1001-5965.2020.0711
基金项目: 

中国科学院复杂航天系统电子信息技术重点实验室自主部署基金 Y42613A32S

详细信息
    通讯作者:

    黄永辉, E-mail: yonghui@nssc.ac.cn

  • 中图分类号: V47;TN927+.21

Convolutional neural network based algorithm for automatic modulation recognition of satellite signals

Funds: 

Laboratory Fund of Key Laboratory of Electronics and Information Technology for Space Systems, CAS Y42613A32S

More Information
  • 摘要:

    自动调制识别是空间认知通信系统的关键技术,有助于实现自适应信号解调。深度神经网络虽然具有特征提取能力强的优势,但也存在参数众多、计算量大的问题,难以实现空间在轨应用。针对以上问题,提出了一种轻量化、高性能的卷积神经网络结构。网络先提取信号的同相正交相关特征,再提取时域特征,最后提取各通道特征均值进行分类。对11种调制方式分类的实验结果表明:当信噪比高于0 dB时,平均识别准确率能达到86.94%,较传统的高阶累积量的方法提高了31.54%;与目前高识别准确率的深度神经网络模型相比,仅使用不到10%的模型参数,在树莓派4B上计算速度平均提高了20倍。

     

  • 图 1  卫星智能接收系统

    Figure 1.  Intelligent receiver system for satellite

    图 2  IQCNet网络结构

    Figure 2.  IQCNet network structure

    图 3  实验总体流程

    Figure 3.  Flowchart of overall experiment process

    图 4  实验详细流程

    Figure 4.  Flowchart of experimental procedures

    图 5  16个卷积核时不同深度的网络结构识别准确率比较

    Figure 5.  Comparison of recognition accuracy between different depths of network structure under 16 convolution kernels

    图 6  24个卷积核时不同深度的网络结构识别准确率比较

    Figure 6.  Comparison of recognition accuracy between different depths of network structure under 24 convolution kernels

    图 7  32个卷积核时不同深度的网络结构识别准确率比较

    Figure 7.  Comparison of recognition accuracy between different depths of network structure under 32 convolution kernels

    图 8  与其他方法的识别准确率比较

    Figure 8.  Comparison of recognition accuracy with other methods

    图 9  IQCNet混淆矩阵(信噪比为0 dB, 识别准确率为81.84%)

    Figure 9.  IQCNet confusion matrix (SNR=0 dB, Accuracy=81.84%)

    图 10  IQCNet混淆矩阵(信噪比为6 dB, 识别准确率为87.62%)

    Figure 10.  IQCNet confusion matrix(SNR=6 dB, Accuracy=87.62%)

    表  1  IQCNet(2, 32)网络结构

    Table  1.   IQCNet(2, 32) network structure

    层名称 输入尺寸 尺寸/步进 卷积核数量
    Conv2d-1 128×2 1×2/1×1 32
    BatchNorm2d-1 128×1 32
    MaxPool2d-1 128×1 2×1/2×1 32
    Conv2d-2 64×1 1×3/1×1 32
    BatchNorm2d-2 64×1 32
    MaxPool2d-2 64×1 2×1/2×1 32
    AdaptiveAvgPool2d 64×1 32
    Linear-1 16
    下载: 导出CSV

    表  2  IQCNet-N(2, 32)网络结构

    Table  2.   IQCNet-N(2, 32) network structure

    层名称 输入尺寸 尺寸/步进 卷积核数量
    Conv2d-1 128×2 1×2/1×1 32
    BatchNorm2d-1 128×2 32
    MaxPool2d-1 128×2 2×1/2×1 32
    Conv2d-2 64×2 1×3/1×1 32
    BatchNorm2d-2 64×2 32
    MaxPool2d-2 64×2 2×1/2×1 32
    AdaptiveAvgPool2d 64×2 32
    Linear-1 16
    下载: 导出CSV

    表  3  对比网络参数

    Table  3.   Parameters of networks for comparision

    网络名称 卷积层数 卷积核尺寸 通道数 LSTM层数 LSTM单元数
    CNN2 2 (1, 3), (2, 3) 256, 80 0 0
    CLDNN 3 (1, 8) 50, 50, 50 1 50
    CNN_LSTM 2 (1, 3), (2, 3) 128, 32 1 128
    下载: 导出CSV

    表  4  实验设备

    Table  4.   Experimental equipment

    测试设备 CPU GPU 内存/GB
    PC i9-7920X RTX 2080Ti 64
    Jetson Nano Cortex-A57 128个CUDA核 4
    树莓派4B Cortex-A72 4
    下载: 导出CSV

    表  5  平均识别准确率

    Table  5.   Average recognition accuracy

    网络名称 平均识别准确率/%
    信噪比-20~18 dB 信噪比0~18 dB
    IQCNet-N(3, -) 47.70 73.47
    IQCNet-N(4, -) 50.33 76.49
    IQCNet-N(5, -) 53.49 80.14
    IQCNet(3, -) 54.36 82.36
    IQCNet(4, -) 58.37 86.72
    IQCNet(5, -) 59.27 86.82
    IQCNet-N(-, 16) 50.07 75.90
    IQCNet-N(-, 24) 51.75 78.38
    IQCNet-N(-, 32) 49.70 75.82
    IQCNet(-, 16) 57.68 85.66
    IQCNet(-, 24) 56.87 84.94
    IQCNet(-, 32) 57.45 85.30
    IQCNet-N 50.51 76.70
    IQCNet 57.33 85.30
    下载: 导出CSV

    表  6  不同方法平均识别准确率

    Table  6.   Average recognition accuracy of different methods

    方法 平均识别准确率/%
    信噪比-20~18 dB 信噪比0~18 dB
    Cumulants+KNN 34.54 55.40
    CNN2 56.82 78.86
    CLDNN 56.84 82.92
    CNN_LSTM 60.19 86.89
    IQCNet(4, 24) 58.15 86.94
    下载: 导出CSV

    表  7  网络参数与计算时间

    Table  7.   Network parameters and compute time

    网络名称 网络参数/个 RTX 2080Ti训练时间/s 树莓派4B推理时间/s Jetson Nano推理时间/s
    CNN2 5 369 947 823 3 035 5 243
    CLDNN 71 311 4 523 3 794 1 585
    CNN__LSTM 108 971 2 673 3 564 990
    IQCNet 5 963 171 181 473
    下载: 导出CSV
  • [1] VIDAL O, VERELST G, LACAN J, et al. Next generation high throughput satellite system[C]//2012 IEEE First AESS European Conference on Satellite Telecommunications. Piscataway: IEEE Press, 2012: 1-7.
    [2] SMITH A, EVANS M, DOWNEY J. Modulation classification of satellite communication signals using cumulants and neural networks[C]//2017 Cognitive Communications for Aerospace Applications Workshop. Piscataway: IEEE Press, 2017: 1-8.
    [3] SILLS J A. Maximum-likelihood modulation classification for PSK/QAM[C]//IEEE Military Communications. Piscataway: IEEE Press, 1999: 217-220.
    [4] WEI W, MENDEL J M. Maximum-likelihood classification for digital amplitude-phase modulations[J]. IEEE Transactions on Communications, 2000, 48(2): 189-193. doi: 10.1109/26.823550
    [5] HASSAN K, DAYOUB I, HAMOUDA W, et al. Automatic modulation recognition using wavelet transform and neural network[C]//2009 9th International Conference on Intelligent Transport Systems Telecommunications. Piscataway: IEEE Press, 2009: 234-238.
    [6] DONG S L, LI Z P, ZHAO L F. A modulation recognition algorithm based on cyclic spectrum and SVM classification[C]//2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE Press, 2020: 2123-2127.
    [7] FLOHBERGER M, GAPPMAIR W, KOUDELKA O. Modulation classifier for signals used in satellite communications[C]//2010 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop. Piscataway: IEEE Press, 2010: 198-202.
    [8] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [9] ARISOY E, SETHY A, RAMABHADRAN B, et al. Bidirectional recurrent neural network language models for automatic speech recognition[C]//2015 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2015: 5421-5425.
    [10] 周鑫, 何晓新, 郑昌文. 基于图像深度学习的无线电信号识别[J]. 通信学报, 2019, 40(7): 114-125. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201907012.htm

    ZHOU X, HE X X, ZHENG C W. Radio signal recognition based on image deep learning[J]. Journal on Communications, 2019, 40(7): 114-125(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201907012.htm
    [11] KARRA K, KUZDEBA S, PETERSEN J. Modulation recognition using hierarchical deep neural networks[C]//2017 IEEE International Symposium on Dynamic Spectrum Access Networks. Piscataway: IEEE Press, 2017: 1-3.
    [12] PENG S L, JIANG H Y, WANG H X, et al. Modulation recognition using hierarchical deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 718-727. doi: 10.1109/TNNLS.2018.2850703
    [13] 查雄, 彭华, 秦鑫, 等. 基于多端卷积神经网络的调制识别方法[J]. 通信学报, 2019, 40(11): 30-37. doi: 10.11959/j.issn.1000-436x.2019206

    ZHA X, PENG H, QIN X, et al. Modulation recognition method based on multi-inputs convolution neural network[J]. Journal on Communications, 2019, 40(11): 30-37(in Chinese). doi: 10.11959/j.issn.1000-436x.2019206
    [14] ZHANG M, DIAO M, GUO L M. Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5: 11074-11082. doi: 10.1109/ACCESS.2017.2716191
    [15] O'SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//International Conference on Engineering Applications of Neural Networks, 2016: 213-226.
    [16] WEST N E, O'SHEA T. Deep architectures for modulation recognition[C]//2017 IEEE International Symposium on Dynamic Spectrum Access Networks. Piscataway: IEEE Press, 2017: 1-6.
    [17] O'SHEA T J, ROY T, CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 168-179. doi: 10.1109/JSTSP.2018.2797022
    [18] 查雄, 彭华, 秦鑫, 等. 基于循环神经网络的卫星幅相信号调制识别与解调算法[J]. 电子学报, 2019, 47(11): 2443-2448. doi: 10.3969/j.issn.0372-2112.2019.11.029

    ZHA X, PENG H, QIN X, et al. Satellite amplitude-phase signals modulation identification and demodulation algorithm based on the cyclic neural network[J]. Acta Electronica Sinica, 2019, 47(11): 2443-2448(in Chinese). doi: 10.3969/j.issn.0372-2112.2019.11.029
    [19] YAO T Y, CHAI Y, WANG S, et al. Radio signal automatic modulation classification based on deep learning and expert features[C]//2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE Press, 2020: 1225-1230.
    [20] WU Y L, LI X J, FANG J. A deep learning approach for modulation recognition via exploiting temporal correlations[C]//2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications. Piscataway: IEEE Press, 2018: 1-5.
    [21] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [22] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2020-12-01]. https://arxiv.org/abs/1409.1556.
    [23] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. New York: ACM, 2015: 448-456.
    [24] SAINATH T N, VINYALS O, SENIOR A, et al. Convolutional, long short-term memory, fully connected deep neural networks[C]//2015 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2015: 4580-4584.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  206
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-24
  • 录用日期:  2021-03-12
  • 网络出版日期:  2022-06-20
  • 整期出版日期:  2022-06-20

目录

    /

    返回文章
    返回
    常见问答