留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于KF-LESO-PID洛伦兹惯性稳定平台控制

熊颖 刘强 任元 樊亚洪 孙津济

熊颖, 刘强, 任元, 等 . 基于KF-LESO-PID洛伦兹惯性稳定平台控制[J]. 北京航空航天大学学报, 2022, 48(6): 1072-1081. doi: 10.13700/j.bh.1001-5965.2020.0721
引用本文: 熊颖, 刘强, 任元, 等 . 基于KF-LESO-PID洛伦兹惯性稳定平台控制[J]. 北京航空航天大学学报, 2022, 48(6): 1072-1081. doi: 10.13700/j.bh.1001-5965.2020.0721
XIONG Ying, LIU Qiang, REN Yuan, et al. Lorentz inertial stability platform control based on KF-LESO-PID[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1072-1081. doi: 10.13700/j.bh.1001-5965.2020.0721(in Chinese)
Citation: XIONG Ying, LIU Qiang, REN Yuan, et al. Lorentz inertial stability platform control based on KF-LESO-PID[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1072-1081. doi: 10.13700/j.bh.1001-5965.2020.0721(in Chinese)

基于KF-LESO-PID洛伦兹惯性稳定平台控制

doi: 10.13700/j.bh.1001-5965.2020.0721
基金项目: 

北京市自然科学基金 3212004

北京市青年拔尖人才培育计划 2017000026833ZK22

“十三五”时期北京市属高校高水平教师队伍建设支持计划 CIT&TCD201804034

详细信息
    通讯作者:

    刘强, E-mail: liuqiangbuaa@163.com

  • 中图分类号: V448.2;TP273

Lorentz inertial stability platform control based on KF-LESO-PID

Funds: 

Beijing Municipal Nature Science Foundation 3212004

Youth Top Talent Training Funded Project of Beijing 2017000026833ZK22

Support Project of High-Level Teachers in Beijing Municipal Universities in the Period of 13th Five-Year Plan CIT&TCD201804034

More Information
  • 摘要:

    为克服现有惯性稳定平台使用机械轴承干扰量大, 使用气/液浮轴承难度高, 使用磁阻力磁轴承线性度差的缺点, 提出一种基于洛伦兹力偏转磁轴承的新型洛伦兹惯性稳定平台(LISP)。为克服耦合效应和承载摩擦谐振干扰对平台偏转通道高频姿态补偿控制的影响, 提出一种基于LESO-PID结合卡尔曼滤波(KF)反馈的数字控制方案。根据洛伦兹力磁轴承(LFMB)支承偏转系统结构特点, 建立了LISP转子偏转动力学模型;利用模型分析径向两自由度偏转特性, 提出在PID控制器的基础上, 引入线性扩张状态观测器(LESO)和卡尔曼滤波反馈以抑制摩擦谐振干扰及耦合效应;搭建了以DSP和FPGA为核心的数字控制系统, 并以离散形式将控制方法进行数字化实现。采用对数频率特性判据和Nichols曲线对所提控制方法的稳定性进行分析, 通过仿真比较引入LESO-KF前后转子偏转通道的稳定性。实验结果表明:PID控制条件下在高频时失真, 引入LESO-KF后明显降低噪声及干扰, 同时还可对系统内部状态参数进行实时观测。实验结果验证了所提控制方法对摩擦谐振干扰及耦合效应的抑制作用。

     

  • 图 1  LISP结构示意图

    Figure 1.  Diagram of LISP structure

    图 2  LFMB等效磁路

    Figure 2.  LFMB equivalent magnetic circuit

    图 3  LESO-PID控制框图

    Figure 3.  Block diagram of LESO-PID control

    图 4  LISP-KF结构

    Figure 4.  LISP-KF structure

    图 5  LISP偏转控制系统框图

    Figure 5.  Block diagram of LISP deflection control system

    图 6  等效开环传递函数Bode图

    Figure 6.  Bode diagram of equivalent open-loop transfer function

    图 7  LISP系统Nichols曲线

    Figure 7.  Nichols curves of LISP system

    图 8  模拟参数R与摄动参数ε取值曲线

    Figure 8.  Simulation parameter R and perturbation parameter ε value curves

    图 9  LFMB角度θ扩张观测

    Figure 9.  LFMB angle θ expansion observation

    图 10  角速度扩张观测

    Figure 10.  Angular velocity expansion observation

    图 11  系统未知动态ξ扩张观测曲线

    Figure 11.  Unknown dynamic ξ expansion observation curve in system

    图 12  LESO干扰信号观测与误差

    Figure 12.  LESO interference signal observation and error

    图 13  普通KF-PID响应曲线

    Figure 13.  Response curves of common KF-PID

    图 14  含LESO KF-PID响应曲线

    Figure 14.  Response curves of KF-PID with LESO

    图 15  LISP控制系统实验平台

    Figure 15.  LISP control system experiment platform

    图 16  LISP连续系统噪声测量

    Figure 16.  LISP continuous system noise measurement

    图 17  KF-PID低压实际测量曲线

    Figure 17.  KF-PID low pressure actual measurement curves

    图 18  LISP矢量示踪曲线

    Figure 18.  LISP vector tracer curves

    图 19  位置与速度矢量拟合曲线

    Figure 19.  Position and velocity vector fitting curves

    表  1  系统实际参数与调试参数

    Table  1.   System actual parameters and debugging parameters

    系统调试参数 数值 物理尺寸参数 数值
    功放增益kg/(V·A-1) 0.31 动子质量m/kg 2.1
    传感器比例增益ks/(V·m-1) 9 800 线圈有效长度L/mm 71.2
    优化比例系数kP 17.13 转动惯量Jx/(kg·m2) 0.005 76
    优化积分系数kI 0.55 线圈匝数N 150
    优化微分系数kD 0.47 线圈电阻R 8.3
    功放截止频率wg/Hz 320 磁感应强度大小B/T 0.3
    滤波截止频率wf/Hz 350 X/Y额定工作范围/(°) ±20
    下载: 导出CSV
  • [1] HILKERT J M. Inertially stabilized platform technology concepts and principles[J]. IEEE Control Systems Magazine, 2008, 28(1): 26-46. doi: 10.1109/MCS.2007.910256
    [2] MASTEN M K. Inertially stabilized platforms for optical imaging systems[J]. IEEE Control Systems Magazine, 2008, 28(1): 47-64. doi: 10.1109/MCS.2007.910201
    [3] ZHAO Y, LIU Q, MA L M, et al. Novel Lorentz force-type magnetic bearing with flux congregating rings for magnetically suspended gyrowheel[J]. IEEE Transactions on Magnetics, 2019, 55(12): 1-8.
    [4] XU G F, CAI Y W, REN Y, et al. Application of a new Lorentz force-type tilting control magnetic bearing in a magnetically suspended control sensitive gyroscope with cross-sliding mode control[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2018, 61(1): 40-47. doi: 10.2322/tjsass.61.40
    [5] 夏长峰, 蔡远文, 任元, 等. 磁悬浮控制敏感陀螺转子偏转通道稳定控制方法[J]. 控制理论与应用, 2020, 37(7): 1535-1543. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY202007011.htm

    XIA C F, CAI Y W, REN Y, et al. Stable control method for rotor tilt channel in magnetically suspended control and sensing gyro[J]. Control Theory & Applications, 2020, 37(7): 1535-1543(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY202007011.htm
    [6] LIU Q, LI H, WANG W, et al. Analysis and experiment of 5-DOF decoupled spherical vernier-gimballing magnetically suspended flywheel (VGMSFW)[J]. IEEE Access, 2020, 8: 111707-111717. doi: 10.1109/ACCESS.2020.3001144
    [7] 李志俊, 包启亮, 毛耀, 等. 惯性平台稳定回路多闭环串级控制[J]. 光电工程, 2010, 37(5): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201005007.htm

    LI Z J, BAO Q L, MAO Y, et al. Multi-closed loops cascade control for stabilization of inertia platform[J]. Opto-Electronic Engineering, 2010, 37(5): 19-24(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201005007.htm
    [8] ZHOU X Y, LI Y T, JIA Y, et al. An improved fuzzy neural network compound control scheme for inertially stabilized platform for aerial remote sensing applications[J]. International Journal of Aerospace Engineering, 2018, 2018: 7021038.
    [9] ZHANG Y S, YANG T, LI C Y, et al. Fuzzy-PID control for the position loop of aerial inertially stabilized platform[J]. Aerospace Science and Technology, 2014, 36: 21-26. doi: 10.1016/j.ast.2014.03.010
    [10] TSAI M S, LIN M T, YAU H T. Development of command-based iterative learning control algorithm with consideration of friction, disturbance, and noise effects[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3): 511-518. doi: 10.1109/TCST.2005.860521
    [11] GE S S, LEE T H, ZHAO Q. Real-time neural network control of a free gyro stabilized mirror system[C]//Proceedings of the 1997 American Control Conference. Piscataway: IEEE Press, 1997: 1076-1080.
    [12] SHTESSEL Y B. Sliding mode stabilization of three axis inertial platform[C]//Proceedings of 26th Southeastern Symposium on System Theory. Piscataway: IEEE Press, 1994: 54-58.
    [13] WANG L, LING M X, WANG D Z, et al. Line-of-sight stabilization system based on fractional-order control[C]//2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics. Piscataway: IEEE Press, 2008: 1-4.
    [14] 贾琳, 孟卫锋. 滑模变结构控制在惯性平台稳定回路中的应用[J]. 科学技术与工程, 2009, 9(2): 433-436. doi: 10.3969/j.issn.1671-1815.2009.02.053

    JIA L, MENG W F. Sliding mode variable structure control in the stabilization loop of inertial platform[J]. Science Technology and Engineering, 2009, 9(2): 433-436(in Chinese). doi: 10.3969/j.issn.1671-1815.2009.02.053
    [15] 李红光, 鱼云岐, 宋亚民. 最优控制在车载惯性平台稳定回路中的应用[J]. 应用光学, 2007, 28(3): 251-256. doi: 10.3969/j.issn.1002-2082.2007.03.002

    LI H G, YU Y Q, SONG Y M. Application of optimal control for stabilization loop of vehicle inertial platform[J]. Journal of Applied Optics, 2007, 28(3): 251-256(in Chinese). doi: 10.3969/j.issn.1002-2082.2007.03.002
    [16] WANG C E, TANG J Q. Design and mathematical analysis of a novel reluctance force-type hybrid magnetic bearing for flywheel with gimballing capability[J]. Mathematical Problems in Engineering, 2013, 2013: 836058.
    [17] TANG J Q, XIANG B, WANG C E. Rotor's suspension for vernier-gimballing magnetically suspended flywheel with conical magnetic bearing[J]. ISA Transactions, 2015, 58: 509-519. doi: 10.1016/j.isatra.2015.05.011
    [18] 王新华, 陈增强, 袁著祉. 基于扩张观测器的非线性不确定系统输出跟踪[J]. 控制与决策, 2004, 19(10): 1113-1116. doi: 10.3321/j.issn:1001-0920.2004.10.008

    WANG X H, CHEN Z Q, YUAN Z Z. Output tracking based on extended observer for nonlinear and uncertain systems[J]. Control and Decision, 2004, 19(10): 1113-1116(in Chinese). doi: 10.3321/j.issn:1001-0920.2004.10.008
    [19] 王新华, 刘金琨. 微分器设计与应用: 信号滤波与求导[M]. 北京: 电子工业出版社, 2010: 152-153.

    WANG X H, LIU J K. Differentiator design and application: Signal filtering and differentiation[M]. Beijing: Publishing House of Electronics Industry, 2010: 152-153(in Chinese).
    [20] AHRENS J H, KHALIL H K. High-gain observers in the presence of measurement noise: A switched-gain approach[J]. Automatica, 2009, 45(4): 936-943. doi: 10.1016/j.automatica.2008.11.012
    [21] 夏长峰, 蔡远文, 任元, 等. MSCSG转子系统的扩展双频Bode图稳定性分析方法[J]. 宇航学报, 2018, 39(2): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201802008.htm

    XIA C F, CAI Y W, REN Y, et al. Stability analysis method with extended double-frequency Bode diagram for rotor of MSCSG[J]. Journal of Astronautics, 2018, 39(2): 168-176(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201802008.htm
    [22] GARCIA-SANZ M. The Nyquist stability criterion in the Nichols chart[J]. International Journal of Robust and Nonlinear Control, 2016, 26(12): 2643-2651. doi: 10.1002/rnc.3465
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  30
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 录用日期:  2021-04-02
  • 网络出版日期:  2022-06-20
  • 整期出版日期:  2022-06-20

目录

    /

    返回文章
    返回
    常见问答