留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

背景压强对电推进羽流场影响的数值模拟

翁惠焱 蔡国飙 郑鸿儒 刘立辉 张百一 贺碧蛟

翁惠焱, 蔡国飙, 郑鸿儒, 等 . 背景压强对电推进羽流场影响的数值模拟[J]. 北京航空航天大学学报, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039
引用本文: 翁惠焱, 蔡国飙, 郑鸿儒, 等 . 背景压强对电推进羽流场影响的数值模拟[J]. 北京航空航天大学学报, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039
WENG Huiyan, CAI Guobiao, ZHENG Hongru, et al. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039(in Chinese)
Citation: WENG Huiyan, CAI Guobiao, ZHENG Hongru, et al. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039(in Chinese)

背景压强对电推进羽流场影响的数值模拟

doi: 10.13700/j.bh.1001-5965.2021.0039
基金项目: 

国家自然科学基金 51977003

详细信息
    通讯作者:

    贺碧蛟, E-mail: hbj@buaa.edu.cn

  • 中图分类号: V439

Numerical simulation of effect of background pressure on electric propulsion plume field

Funds: 

National Natural Science Foundation of China 51977003

More Information
  • 摘要:

    真空舱内背景压强是电推力器地面试验过程中影响工作性能评估和羽流场参数诊断的重要参数。针对LIPS-200型离子推力器羽流场参数的数值仿真中采用的背景压强建立方法进行了仿真分析。仿真中采用混合粒子网格(PIC)方法和直接模拟蒙特卡罗(DSMC)方法处理羽流场中等离子体运动和粒子间碰撞,分别采用虚拟粒子和计算粒子建立压强的方式,对电推进羽流场进行了数值模拟,并与绝对真空环境进行对比分析。结果表明:背景压强的存在导致中性粒子和电荷交换离子数密度较绝对真空环境高1个量级以上。虚拟粒子可大幅提高计算效率,获得的流场中电荷交换离子分布与计算粒子结果相近,但中性粒子分布相差较大,虚拟粒子无法表征壁面及真空泵的影响。

     

  • 图 1  网格中电荷分配示意图

    Figure 1.  Schematic diagram of charge distribution in the grid

    图 2  蛙跳算法示意图

    Figure 2.  Schematic diagram of leapfrog algorithm

    图 3  背景压强算例计算域示意图

    Figure 3.  Simulation domain for background pressure cases

    图 4  计算粒子建立的中性气体分布

    Figure 4.  Neutral gas distribution created by computed particles

    图 5  计算粒子建立的背景压强中性气体分布

    Figure 5.  Neutral gas distribution of background pressure created by computed particles

    图 6  虚拟粒子建立的背景压强中性气体分布

    Figure 6.  Neutral gas distribution of background pressure created by virtual particles

    图 7  绝对真空环境下的中性气体分布

    Figure 7.  Neutral gas distribution in absolute vacuum case

    图 8  推力器出口轴线上不同模拟情况下中性粒子数密度对比

    Figure 8.  Comparison of neutral particle number density at thruster outlet axis in different simulation cases

    图 9  推力器出口0.5 m径向中性粒子数密度对比

    Figure 9.  Comparison of radial neutral particle number density at thruster outlet of 0.5 m

    图 10  推力器出口轴线上不同模拟情况下电荷交换离子数密度对比

    Figure 10.  Comparison of CEX ion number density at thruster outlet axis in different simulation cases

    图 11  推力器出口0.5 m径向电荷交换离子数密度对比

    Figure 11.  Comparison of radial CEX ion number density at thruster outlet of 0.5 m

    图 12  计算粒子算例中的电势分布

    Figure 12.  Potential distribution in computed particle case

    图 13  绝对真空环境下的电势分布

    Figure 13.  Potential distribution in absolute vacuum case

    图 14  计算粒子算例中的电荷交换离子分布

    Figure 14.  Distribution of CEX ions in computed particle case

    图 15  绝对真空环境下的电荷交换离子分布

    Figure 15.  Distribution of CEX ions in absolute vacuum case

    表  1  LIPS-200型离子推力器工作参数[21]

    Table  1.   Parameters of LIPS-200 ion thruster[21]

    工作参数 数值
    屏栅电压/V 1 000
    束电流/A 0.8
    阴极氙气流率/(mg·s-1) 0.14
    放电室氙气流率/(mg·s-1) 1.1
    中和器阴极流率/(mg·s-1) 0.14
    下载: 导出CSV

    表  2  LIPS-200型离子推力器仿真基本参数[22]

    Table  2.   Basic simulation parameters of LIPS-200 ion thruster[22]

    粒子种类 流率/s-1 温度/K 速度/(m·s-1)
    Xe 5.69×1017 300 325
    Xe+ 4.61×1018 46 400 38 313
    Xe2+ 5.12×1017 46 400 54 183
    下载: 导出CSV

    表  3  背景压强处理方式对比的算例安排

    Table  3.   Case arrangement for comparison of background pressure simulation methods

    算例 初始压强/mPa 边界处理
    计算粒子 0 反射
    虚拟粒子 0.25 自由边界
    绝对真空环境 0 自由边界
    下载: 导出CSV
  • [1] KAMHAWI H, HAAG T, HUANG W, et al. Performance, facility pressure effects, and stability characterization tests of NASA's 12.5-kW Hall effect rocket with magnetic shielding thruster[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016: 4826.
    [2] NAKAYAMA Y, NAKAMURA M. Electric propulsion propellant flow within vacuum chamber[C]//34th International Electric Propulsion Conference, 2015: 2015-360.
    [3] NING Z X, CHU Y F, LIU X Y, et al. Effect of vacuum backpressure on discharge characteristics of hollow cathode[J]. Plasma Science and Technology, 2019, 21(12): 125402. doi: 10.1088/2058-6272/ab4364
    [4] MACDONALD-TENENBAUM N, PRATT Q, NAKLES M, et al. Background pressure effects on ion velocity distributions in an SPT-100 Hall thruster[J]. Journal of Propulsion and Power, 2019, 35(2): 1-10.
    [5] WALKER M L R, GALLIMORE A D. Neutral density map of Hall thruster plume expansion in a vacuum chamber[J]. Review of Scientific Instruments, 2005, 76(5): 053509. doi: 10.1063/1.1915011
    [6] CAI C P. A new gas kinetic model to analyze background flow effects on weak gaseous jet flows from electric propulsion devices[J]. Aerospace, 2017, 4(1): 5. doi: 10.3390/aerospace4010005
    [7] FRIEMAN J D. Characterization of background neutral flows in vacuum test facilities and impacts on Hall effect thruster operation[D]. Atlanta: Georgia Institute of Technology, 2017: 21-33.
    [8] VANGILDER D B, BOYD I D, KEIDAR M. Particle simulations of a Hall thruster plume[J]. Journal of Spacecraft and Rockets, 2000, 37(1): 129-136. doi: 10.2514/2.3536
    [9] BOYD I D. A review of Hall thruster plume modeling[J]. Journal of Spacecraft and Rockets, 2001, 38(3): 381-387. doi: 10.2514/2.3695
    [10] CHOI Y, KEIDAR M, BOYD I D. Particle simulation of plume flows from an anode-layer Hall thruster[J]. Journal of Propulsion and Power, 2008, 24(3): 554-561. doi: 10.2514/1.28384
    [11] 李小平, 张天平, 贾艳辉, 等. 真空舱背景压力对离子推力器栅极系统工作性能影响的数值模拟[J]. 真空与低温, 2012, 18(2): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201202004.htm

    LI X P, ZHANG T P, JIA Y H, et al. Numerical simulation of the effect of vacuum facility background pressure on ion thruster grid system work performance[J]. Vacuum & Cryogenics, 2012, 18(2): 71-76(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201202004.htm
    [12] JIAN H H, CHU Y C, CAO H J, et al. Three-dimensional IFE-PIC numerical simulation of background pressure 's effect on accelerator grid impingement current for ion optics[J]. Vacuum, 2015, 116: 130-138. doi: 10.1016/j.vacuum.2015.03.011
    [13] KORKUT B, LEVIN D A, TUMUKLU O. Simulations of ion thruster plumes in ground facilities using adaptive mesh refinement[J]. Journal of Propulsion and Power, 2017, 33(3): 681-696. doi: 10.2514/1.B35958
    [14] 王军伟, 张磊, 龚洁, 等. 基于粒子模拟的舱内布局对霍尔推进器真空羽流的影响[J]. 航空动力学报, 2020, 35(9): 1988-1994. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202009021.htm

    WANG J W, ZHANG L, GONG J, et al. Effect of cabin layout on vacuum plume of Hall thruster based on particle simulation[J]. Journal of Aerospace Power, 2020, 35(9): 1988-1994(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202009021.htm
    [15] ZHENG H R, CAI G B, WANG H Y, et al. Three-dimensional particle simulation of ion thruster plume flows with EX-PWS[J]. Plasma Science and Technology, 2018, 20(10): 105501. doi: 10.1088/2058-6272/aad5da
    [16] CAI G B, ZHENG H R, LIU L H, et al. Three-dimensional particle simulation of ion thruster plume impingement[J]. Acta Astronautica, 2018, 151: 645-654. doi: 10.1016/j.actaastro.2018.07.007
    [17] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford: Oxford University Press, 1994.
    [18] DEBOER P C T. Electric probe measurements in the plume of an ion thruster[J]. Journal of Propulsion and Power, 1996, 12(1): 95-104. doi: 10.2514/3.23996
    [19] DALGARNO A, WILLIAMS A. The mobilities of ions in unlike gases[J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 1958, 250(982): 411-425.
    [20] RAPP D, FRANCIS W E. Charge exchange between gaseous ions and atoms[J]. The Journal of Chemical Physics, 1962, 37(11): 2631-2645. doi: 10.1063/1.1733066
    [21] 郑茂繁, 江豪成, 顾左, 等. 20 cm氙离子推力器3 000 h寿命实验[J]. 航天器环境工程, 2009, 26(4): 374-377. https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ200904028.htm

    ZHENG M F, JIANG H C, GU Z, et al. 3 000 h life test of 20 cm xenon ion thruster[J]. Spacecraft Environment Engineering, 2009, 26(4): 374-377(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HTHJ200904028.htm
    [22] 张建华, 李晶华, 尤凤仪, 等. 离子推力器羽流热效应仿真分析[J]. 北京航空航天大学学报, 2018, 44(10): 2028-2034. doi: 10.13700/j.bh.1001-5965.2017.0802

    ZHANG J H, LI J H, YOU F Y, et al. Simulation analysis of ion thruster plume thermal effect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2028-2034(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0802
    [23] 王文龙, 周建平, 蔡国飙. 内置式深冷泵抽速计算及数值模拟研究[J]. 真空科学与技术学报, 2012, 32(5): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201205018.htm

    WANG W L, ZHOU J P, CAI G B. Direct simulation Monte Carlo study of pumping speed of internal cryogenic fins[J]. Chinese Journal of Vacuum Science and Technology, 2012, 32(5): 85-89(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201205018.htm
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  107
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 录用日期:  2021-04-04
  • 网络出版日期:  2021-04-09
  • 整期出版日期:  2022-10-20

目录

    /

    返回文章
    返回
    常见问答