留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

r型网格自适应在间断Galerkin有限元激波捕捉中的应用

龚小权 吴晓军 唐静 李明 张健

龚小权, 吴晓军, 唐静, 等 . r型网格自适应在间断Galerkin有限元激波捕捉中的应用[J]. 北京航空航天大学学报, 2022, 48(10): 1889-1898. doi: 10.13700/j.bh.1001-5965.2021.0046
引用本文: 龚小权, 吴晓军, 唐静, 等 . r型网格自适应在间断Galerkin有限元激波捕捉中的应用[J]. 北京航空航天大学学报, 2022, 48(10): 1889-1898. doi: 10.13700/j.bh.1001-5965.2021.0046
GONG Xiaoquan, WU Xiaojun, TANG Jing, et al. Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1889-1898. doi: 10.13700/j.bh.1001-5965.2021.0046(in Chinese)
Citation: GONG Xiaoquan, WU Xiaojun, TANG Jing, et al. Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1889-1898. doi: 10.13700/j.bh.1001-5965.2021.0046(in Chinese)

r型网格自适应在间断Galerkin有限元激波捕捉中的应用

doi: 10.13700/j.bh.1001-5965.2021.0046
基金项目: 

国家自然科学基金 11902343

国家数值风洞工程 

详细信息
    通讯作者:

    吴晓军, E-mail: huang7766@sina.com

  • 中图分类号: V221+.3;TB553

Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method

Funds: 

National Natural Science Foundation of China 11902343

National Numerical Wing Tunnel 

More Information
  • 摘要:

    间断Galerkin(DG)有限元方法因计算精度高、适用于非结构网格等特点得到广泛研究和应用,其在数值模拟包含强间断流场时存在残差收敛性和计算鲁棒性差问题,均匀分布的网格加剧这一问题并影响激波分辨率。针对该问题,发展了r型网格自适应方法,实现间断Galerkin有限元数值模拟过程中网格自适应加密。基于网格点归一化的压力值作为r型网格自适应中网格点移动驱动力的重要权值,并将网格自适应后的网格点位移变化量与网格点之间的初始位移之比作为驱动力的另一重要权值,实现网格沿激波方向各向异性自适应加密,并且激波附近网格点的相邻网格点同步向激波方向移动。发展了适合间断Galerkin有限元方法的Venkatakrishnan限制器。并列NACA0012翼型超声速算例及三维并列圆柱相互干扰算例结果表明:基于r型网格自适应的间断Galerkin有限元方法能够清晰锐利捕捉激波,提高模拟精度,具有良好的收敛性和鲁棒性。

     

  • 图 1  r型网格自适应网格点移动位移计算流程

    Figure 1.  Calculation process of grid point displacement in r-grid adaptive

    图 2  网格点分布示意图

    Figure 2.  Distribution diagram of grid points

    图 3  NACA0012翼型计算网格

    Figure 3.  Computational grid of NACA0012 airfoil

    图 4  不同方法压力分布比较

    Figure 4.  Comparison of pressure distribution between different methods

    图 5  NACA0012翼型初始计算网格及流场

    Figure 5.  Initial computational grid and flowfield of NACA0012 airfoil

    图 6  NACA0012翼型第1次自适应后计算网格及流场

    Figure 6.  Computational grid and flowfield of NACA0012 airfoil after first r-adaptation

    图 7  NACA0012翼型第3次自适应后计算网格及流场

    Figure 7.  Computational grid and flowfield of NACA0012 airfoil after third r-adaptation

    图 8  NACA0012翼型第5次自适应后计算网格及流场

    Figure 8.  Computational grid and flowfield of NACA0012 airfoil after fifth r-adaptation

    图 9  NACA0012翼型第11次自适应后计算网格及流场

    Figure 9.  Computational grid and flowfield of NACA0012 airfoil after eleventh r-adaptation

    图 10  自适应网格局部放大图

    Figure 10.  Local enlarged view of adaptation grid

    图 11  空间截面位置

    Figure 11.  Space section position

    图 12  z=0.25 m处压力分布及激波处局部放大图

    Figure 12.  Pressure distribution at section z=0.25 m and local enlarged view of shock wave

    图 13  z=0.068 m处压力分布及激波处局部放大图

    Figure 13.  Pressure distribution at section z=0.068 m and local enlarged view of shock wave

    图 14  自适应过程阻力系数随计算步数变化曲线

    Figure 14.  Curve of drag coefficient varying with iteration steps in adaptive process

    图 15  阻力系数及限制器系数平均值随自适应步数变化

    Figure 15.  Resistance and average value of limitation coefficients with adaptive steps

    图 16  三维双半球-圆柱初始计算网格及流场

    Figure 16.  Initial computational grid and flowfield of 3D double hemispherical cylinder

    图 17  双半球-圆柱第2次自适应计算网格及流场

    Figure 17.  Computational grid and flowfield of double hemispherical cylinder after second r-adaptation

    图 18  双半球-圆柱第4次自适应计算网格及流场

    Figure 18.  Computational grid and flowfield of double hemispherical cylinder after fourth r-adaptation

    图 19  双半球-圆柱初始x=0.22 m处空间网格及流场

    Figure 19.  Spatial grid and flowfield at x=0.22 m section of double hemispherial cylinder

    图 20  双半球-圆柱第2次自适应后x=0.22 m处空间网格及流场

    Figure 20.  Spatial grid and flowfield at x=0.22 m section of double hemispherial cylinder after second r-adaptation

    图 21  双半球-圆柱第4次自适应后x=0.22 m处空间网格及流场

    Figure 21.  Spatial grid and flowfield at x=0.22 m section of double hemispherial cylinder after fourth r-adaptation

    图 22  自适应前后对称面z=0.04 m截面压力分布

    Figure 22.  Pressure distribution at z=0.04 m section of symmetry plane before and after adaptation

    图 23  自适应前后下部圆柱y=0截面表面压力分布

    Figure 23.  Surface pressure distribution of lower cylinder at y=0 section before and after adaptation

    图 24  自适应前后上部圆柱y=0截面表面压力分布

    Figure 24.  Surface pressure distribution of upper cylinder at y=0 section before and after adaptation

    图 25  自适应前后下部圆柱x=0.22 m截面表面压力分布

    Figure 25.  Surface pressure distribution of lower cylinder at x=0.22 m section before and after adaptotion

  • [1] REED W H, HILL T R. Triangular mesh methods for the neutron transport equation: LA-UR-73-479[R]. Los Alamos: Scientific Laboratory, 1973.
    [2] COCKBURN B, KARNIADAKIS G E, SHU C W. Discontinuous Galerkin methods: Theory, computation and applications[M]. Berlin: Springer, 2000.
    [3] PERSSON P O. Shock capturing for high-order discontinuous Galerkin simulation of transient flow problems: AIAA 2013-3061[R]. Reston: AIAA, 2013.
    [4] HARTMANN R. Higher-order and adaptive discontinuous Galerkin methods with shock-capturing applied to transonic turbulent delta wing flow: AIAA 2012-0459[R]. Reston: AIAA, 2012.
    [5] MICHAEL Y, WANG Z J. A parameter-free generalized moment limiter for high order methods on unstructured grids: AIAA-2009-605[R]. Reston: AIAA, 2009.
    [6] ZHU J, ZHONG X H, SHU C W, et al. Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter[J]. Communications in Computational Physics, 2016, 19(4): 944-969. doi: 10.4208/cicp.070215.200715a
    [7] BARTH T J, JESPERSEN D C. The design and application of upwind schemes on unstructured meshes[C]//27th Aerospace Sciences Meeting. Reston: AIAA, 1989.
    [8] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions[C]//31st Aerospace Sciences Meeting. Reston: AIAA, 1993.
    [9] ZHU J, ZHONG X H, SHU C W, et al. Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter on unstructured meshes[J]. Communications in Computational Physics, 2017, 21(3): 623-649. doi: 10.4208/cicp.221015.160816a
    [10] TODARELLO G, VONCK F, BOURASSEAU S, et al. Finite-volume goal-oriented mesh adaptation for aerodynamics using functional derivative with respect to nodal coordinates[J]. Journal of Computational Physics, 2016, 313: 799-819. doi: 10.1016/j.jcp.2016.02.063
    [11] 唐静, 郑鸣, 邓有奇, 等. 网格自适应技术在复杂外形流场模拟中的应用[J]. 计算力学学报, 2015, 32(6): 752-757. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201506007.htm

    TANG J, ZHENG M, DENG Y Q, et al. Grid adaptation for flow simulation of complicated configuration[J]. Chinese Journal of Computational Mechanics, 2015, 32(6): 752-757(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201506007.htm
    [12] 崔鹏程, 邓有奇, 唐静, 等. 基于伴随方程的网格自适应及误差修正[J]. 航空学报, 2016, 37(10): 2992-3002. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201610010.htm

    CUI P C, DENG Y Q, TANG J, et al. Adjoint equations-based grid adaptation and error correction[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 2992-3002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201610010.htm
    [13] CHILA R J, KAMINSKI D A. Automated grid independence via unstructured adaptive refinement: AIAA 2006-3062[R]. Reston: AIAA, 2006.
    [14] MENIER V, LOSEILLEY A, ALAUZET F. CFD validation and adaptivity for viscous flow simulations[C]//7th AIAA Theoretical Fluid Mechanics Conference. Reston: AIAA, 2014: 436-457.
    [15] TANG J, ZHANG J, LI B, et al. Unsteady flow simulation with mesh adaptation[J]. International Journal of Modern Physics B, 2020, 34(14): 204008.
    [16] KAREN L B, PETER A G, MICHAEL A P, et al. Parallel, gradient-based anisotropic mesh adaptation for re-entry vehicle configurations: AIAA 2006-3579[R]. Reston: AIAA, 2006.
    [17] 吴泽艳, 王立峰, 武哲. 基于简单WENO-间断Galerkin的欧拉方程自适应计算[J]. 北京航空航天大学学报, 2016, 42(4): 806-814. doi: 10.13700/j.bh.1001-5965.2015.0237#viewType=Abstract

    WU Z Y, WANG L F, WU Z. Adaptive simple WENO limiter-discontinuous Galerkin method for Euler equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(4): 806-814(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0237#viewType=Abstract
    [18] 孙强, 吕宏强, 伍贻兆. 基于高阶物面近似的自适应间断有限元法欧拉方程数值模拟[J]. 空气动力学学报, 2015, 33(4): 446-453. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201504002.htm

    SUN Q, LU H Q, WU Y Z. Adaptive discontinuous Galerkin method to solve Euler equations based on high-order approximative boundary[J]. Acta Aerodynamica Sinica, 2015, 33(4): 446-453(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201504002.htm
    [19] 王利, 周伟江. 基于伴随方法的网格自适应DG方法[J]. 中国科学: 技术科学, 2017, 47(11): 1214-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201711010.htm

    WU L, ZHOU W J. An adjoint-based grid discontinuous Galerkin method[J]. Scientia Sinica Technologica, 2017, 47(11): 1214-1224(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201711010.htm
    [20] WOOPEN M, MAY G, SCHVTZ J. Adjoint-based error estimation and mesh adaptation for hybridized discontinuous Galerkin methods[J]. International Journal for Numerical Methods in Fluids, 2014, 76(3): 811-834.
    [21] FIDKOWSKI K J. A simplex cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations[D]. Cambridge: Massachusetts Institute of Technology, 2007.
    [22] CEZE M, FIDKOWSKI K J. Drag prediction using adaptive discontinuous finite elements: AIAA 2013-0051[R]. Reston: AIAA, 2013.
    [23] CHAND K K, LEE K D. Adaptation of structured grids with redistribution and embedding[C]//Fluid Dynamics Conference. Reston: AIAA, 1999.
    [24] QIN N, ZHU Y. Grid adaptation for shock/turbulent boundary layer interaction: AIAA 98-0227[J]. Reston: AIAA, 1998.
    [25] 马明生, 龚小权, 邓有奇, 等. 一种适用于非结构网格的间断Galerkin有限元LU-SGS隐式方法[J]. 西北工业大学学报, 2016, 34(5): 754-760. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201605003.htm

    MA M S, GONG X Q, DENG Y Q, et al. An implicit LU-SGS scheme for the discontinuous Galerkin method on unstructured grids[J]. Journal of Northwestern Polytechnical University, 2016, 34(5): 754-760(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201605003.htm
  • 加载中
图(25)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  142
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-25
  • 录用日期:  2021-03-23
  • 网络出版日期:  2021-04-19
  • 整期出版日期:  2022-10-20

目录

    /

    返回文章
    返回
    常见问答