留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模型的民机验证需求捕获及应用技术

郭泰 钱馨 宫綦 任文明 杨栓宝 徐清刚

郭泰, 钱馨, 宫綦, 等 . 基于模型的民机验证需求捕获及应用技术[J]. 北京航空航天大学学报, 2022, 48(10): 1933-1942. doi: 10.13700/j.bh.1001-5965.2021.0047
引用本文: 郭泰, 钱馨, 宫綦, 等 . 基于模型的民机验证需求捕获及应用技术[J]. 北京航空航天大学学报, 2022, 48(10): 1933-1942. doi: 10.13700/j.bh.1001-5965.2021.0047
GUO Tai, QIAN Xin, GONG Qi, et al. Methodology for model based verification requirements capturing and application in civil aircraft development[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1933-1942. doi: 10.13700/j.bh.1001-5965.2021.0047(in Chinese)
Citation: GUO Tai, QIAN Xin, GONG Qi, et al. Methodology for model based verification requirements capturing and application in civil aircraft development[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1933-1942. doi: 10.13700/j.bh.1001-5965.2021.0047(in Chinese)

基于模型的民机验证需求捕获及应用技术

doi: 10.13700/j.bh.1001-5965.2021.0047
详细信息
    通讯作者:

    郭泰, E-mail: guotai101@126.com

  • 中图分类号: V221+.7;V37

Methodology for model based verification requirements capturing and application in civil aircraft development

More Information
  • 摘要:

    针对当前验证工作顶层规划性不强、研制单位与承试单位接口不清晰、验证活动充分性不确定等问题,基于系统工程的民机研制过程,结合验证场景建模,形成以验证需求为核心的验证工作技术流程。承接产品设计需求,开展验证场景利益关联方识别、验证场景活动建模及时序建模研究;定义验证需求的内涵要素,基于模型开展验证需求捕获,形成设计需求到验证方法到验证需求的映射追溯;在此基础上,研究基于验证场景模型的验证计划及验证程序定义方法。结合某型飞机起落架系统案例,形成一套从设计需求到验证需求再到验证程序的完整技术方法。所提技术方法能够充分保证从产品设计需求到验证活动开展的完整追溯,有效促进民机研制验证过程与产品研制有机融合,为民机研制早期对验证活动的规划提供重要借鉴。

     

  • 图 1  验证活动与飞机产品研制对应关系

    Figure 1.  Corresponding relationship between verification activities and aircraft product development

    图 2  围绕验证需求的验证总体思路

    Figure 2.  General technical process based on verification requirements

    图 3  设计需求的验证方法属性示例

    Figure 3.  Example of verification method property of design requirements

    图 4  主制造商研制系统利益相关方分解结构示例

    Figure 4.  Example of stakeholder decomposition structure of main manufacturer development system

    图 5  试验验证场景顶层活动逻辑示例

    Figure 5.  Example of top-level activity in test verification scenario

    图 6  细化的验证场景活动示例

    Figure 6.  Example of detailed verification scenario activity

    图 7  某验证场景时序描述示例

    Figure 7.  Example of averification scenario timing description

    图 8  基于模型的验证使能需求捕获

    Figure 8.  Capture of verification enabling requirement based on model

    图 9  基于模型的验证程序定义示例

    Figure 9.  Example of model based verification procedure definition

    图 10  验证程序模板[6]

    Figure 10.  Template of verification procedure[6]

    图 11  设计需求-验证需求-验证程序完整追溯

    Figure 11.  Complete traceability of design requirement-verification requirement-verification procedure

    表  1  某机型产品设计需求示例

    Table  1.   Example of product design requirements for a certain aircraft

    需求编号 设计需求
    DR-1 停机刹车系统应具备停机刹车功能,采用液压能源提供停机刹车所需压力;停机刹车液压源采用2种不同供压模式,且2种供压模式保持完全的功能独立
    DR-2 停机刹车功能采用停机刹车手柄作为实施停机刹车的装置。停机刹车手柄采用摇臂式手柄,手柄的最大行程位置为飞机停机刹车功能执行位置。当采用手柄执行停机刹车功能时,手柄的位置应可保持在最大行程位置,并锁定
    DR-3 停机刹车系统应可感知飞机停机刹车功能状态,并向控制系统和座舱指示系统提供停机刹车状态信号
    DR-4 停机刹车系统应能够向综合显示和航电核心处理系统发送停机刹车状态信号,以供飞机在起落架系统简图页进行显示
    DR-5 停机刹车系统应能够向综合显示和航电核心处理系统发送蓄压器压力信号,以供飞机在起落架系统简图页进行提供显示及告警
    DR-6 停机刹车压力应在质量为28 000 kg的飞机在地面(机场高度0 m,温度ISA+0℃,坡度不大于3°)停放12 h后保持在3 MPa以上,且在此期间不能启动液压泵向系统供压
    下载: 导出CSV

    表  2  某试验场景利益相关方定义示例

    Table  2.   Example of stakeholder definition in a test scenario

    序号 利益相关方名称 参与模型行为交互的利益相关方定义
    1 总装操作人员 负责飞机总装集成,在本场景中负责在铁鸟台架上安装试验件
    2 铁鸟台 开展铁鸟试验的使能设施,在本场景中,集成试验显示仪器、试验记录仪器后的铁鸟台统称为铁鸟台
    3 刹车系统研发人员 负责刹车系统的工程设计,提出对设计需求的验证方法,并提供刹车系统数模
    4 铁鸟台研制人员 负责铁鸟台的研发生产,并在铁鸟台上完成对试验显示仪器、试验记录仪器的集成
    5 试验操作人员 负责试验显示仪器、试验记录仪器在铁鸟台上的安装,并负责停机、应急刹车功能验证试验的实施操作
    6 实验室能源设施 指地面实验室能够提供液压源、电源等能源的基础设施
    7 试验记录人员 负责在试验实施过程中,对试验数据进行记录
    8 停机/应急刹车系统(试验件) 试验件指停机/应急刹车系统与试验加装传感器的集合
    下载: 导出CSV

    表  3  产品设计需求-验证方法-验证需求映射表

    Table  3.   roduct design requirement-verification method-verification requirement mapping table

    设计需求 MOC0 MOC1 MOC2 MOC3 MOC4 MOC5 MOC6 MOC7 MOC8 MOC9 验证需求
    DR-1 × × × × VR-DR1-MOC1-XXX
    VR-DR1-MOC2-XXX
    VR-DR1-MOC4-XXX
    VR-DR1-MOC5-XXX
    DR-2 × × × VR-DR2-MOC1-XXX
    VR-DR2-MOC2-XXX
    VR-DR2-MOC4-XXX
    下载: 导出CSV
  • [1] 贺东风, 赵越让, 郭博智, 等. 中国商用飞机有限责任公司系统工程手册[M]. 上海: 上海交通大学出版社, 2017: 1-16.

    HE D F, ZHAO Y R, GUO B Z, et al. COMAC systems engineering manual[M]. Shanghai: Shanghai Jiao Tong University Press, 2017: 1-16(in Chinese).
    [2] ROUSSEL J C. Airbus presentation benefits of requirement engineering with DOORS[C]//USA Presentation at Telelogic Capital Market Event, 2005: 12-18.
    [3] MIKE G. Before opening DOORS-best practices planning at Boeing[R]. Seattle: USA Boeing Management Company, 2010: 1-25.
    [4] US Department of Defense. Defense and program-unique specifications format and content: MIL-STD-961E[S]. Washington, D.C. : US Department of Defense, 2014: 36-37.
    [5] CHEN R, CHEN C H, LIU Y, et al. Ontology-based requirement verification for complex systems[J]. Advanced Engineering Informatics, 2020, 46: 101148. doi: 10.1016/j.aei.2020.101148
    [6] SAE Aerospace. Guidelines for development of civil aircraft and systems: SAE ARP 4754A[S]. Warrendale: SAE International, 2010: 54-70.
    [7] 徐万萌, 陈芳, 齐林. 基于ARP4754A的飞行管理系统需求确认以及系统验证研究[C]//2019(第八届)民用飞机航电国际论坛, 2019: 636-640.

    XU W M, CHEN F, QI L. Research on requirement validation and system verification of flight management system based on ARP4754A[C]//2019(8th) Civil Aircraft Avionics International Forum, 2019: 636-640(in Chinese).
    [8] 许光磊, 刘永超, 高斌, 等. 基于模型的航电系统集成验证技术研究[J]. 民用飞机设计与研究, 2017, 3: 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MYFJ201703007.htm

    XU G L, LIU Y C, GAO B, et al. Research on model-based integration and verification technology of avionics system[J]. Civil Aircraft Design & Research, 2017, 3: 21-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MYFJ201703007.htm
    [9] KARBAN R, HAUBER R, WEILKIENS T. MBSE in telescope modeling[J]. Insight, 2009, 12(4): 24-31. doi: 10.1002/inst.200912424
    [10] ESTEFAN J A. 基于模型的系统工程(MBSE)方法论综述[M]. 张新国, 译. 北京: 机械工业出版社, 2014: 1-20.

    ESTEFAN J A. Survey of model-based system engineering methodology[M]. ZHANG X G, translated. Beijing: China Machine Press, 2014: 1-20(in Chinese).
    [11] MADNI A M, SIEVERS M. Model-based systems engineering: Motivation, current status, and research opportunities[J]. Systems Engineering, 2018, 21: 172-190. doi: 10.1002/sys.21438
    [12] 张绍杰, 李正强, 海晓航, 等. 基于MBSE的民用飞机安全关键系统设计[J]. 中国科学: 技术科学, 2018, 48(3): 299-311. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201803006.htm

    ZHANG S J, LI Z Q, HAI X H, et al. Design of safety critical system for civil aircraft based on MBSE[J]. Chinese Science: Technical Science, 2018, 48(3): 299-311(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201803006.htm
    [13] ZHU S, TANG J, GAUTHIER J M, et al. A formal approach using SysML for capturing functional requirements in avionics domain[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2717-2726. doi: 10.1016/j.cja.2019.03.037
    [14] 梅芊, 黄丹, 卢艺. 基于MBSE的民用飞机功能架构设计方法[J]. 北京航空航天大学学报, 2019, 45(5): 1042-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201905023.htm

    MEI Q, HUANG D, LU Y. Design method of civil aircraft functional architecture based on MBSE[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 1042-1051(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201905023.htm
    [15] 郑党党, 吴颖, 任丽强. 飞机设计基于模型的系统工程技术研究与应用[C]//第21届中国系统仿真技术及其应用学术年会, 2020, 21: 224-228.

    ZHENG D D, WU Y, REN L Q. Research on model based systems engineering and application in aircraft design[C]//The 21st Annual Conference of China's System Simulation Technology and Applications, 2020, 21: 224-228(in Chinese).
    [16] 邓兴民, 张惠媛, 李建仁, 等. 基于运行场景的需求捕获方法在炮塔中的应用[J]. 西北工业大学学报, 2017, 35(S1): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD2017S1015.htm

    DENG X M, ZHANG H Y, LI J R, et al. The application of requirement capture method based on operational scenario[J]. Journal of Northwestern Polytechnical University, 2017, 35(S1): 88-92(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD2017S1015.htm
    [17] 谢陵, 方俊伟, 徐州, 等. 基于功能场景分析的飞机需求捕获和确认方法研究[J]. 科技资讯, 2015, 13(18): 83-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ201518044.htm

    XIE L, FANG J W, XU Z, et al. Research on capture and confirmation method for aircraft requirements based on functional scenario analysis[J]. Science & Technology Information, 2015, 13(18): 83-84(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ201518044.htm
    [18] ELIZABETH H, KEN J, JEREMY D. Requirements engineering[M]. 2nd ed. Berlin: Springer, 2005: 1-19.
    [19] ISO/IEC. Systems and software engineering-System life cycle processes: ISO 15288[S]. Geneva: ISO, 2015: 70-77.
    [20] JACKSON S. Systems engineering for commercial aircraft: A domain-specification adaptation[M]. 2nd ed. London: Routledge Taylor & Francis Group, 2015: 9-14.
    [21] 汉斯-亨利奇·阿尔特菲尔德. 商用飞机项目——复杂高端产品的研发管理[M]. 唐长红, 等译. 北京: 航空工业出版社, 2013: 1-20.

    ALTFELD H H. Commercial aircraft projects-Managing the development of highly complex products[M]. TANG C H, et al, translated. Beijing: Aviation Industry Press, 2013: 1-20(in Chinese).
    [22] ISO/IEC. Systems and software engineering-Life cycle processes-Requirements engineering: ISO 29148[S]. Geneva: ISO, 2011: 34-35.
    [23] 中国民用航空局航空器适航审定司. 航空器型号合格审定程序: AP-21-AA-2011-03-R4[S]. 北京: 中国民用航空局航空器适航审定司, 2011: 123.

    Airworthiness Certification Department of Civil Aviation Admi-nistration of China. Aircraft type certification procedure: AP-21-AA-2011-03-R4[S]. Beijing: Airworthiness Certification Department of Civil Aviation Administration of China, 2011: 123(in Chinese).
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  497
  • HTML全文浏览量:  141
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-25
  • 录用日期:  2021-04-09
  • 网络出版日期:  2021-04-28
  • 整期出版日期:  2022-10-20

目录

    /

    返回文章
    返回
    常见问答