留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于特征根有界摄动分析的高超声速飞行器双通道控制

杨雨宸 张增辉 闫佳宁 张晶 杨凌宇

杨雨宸, 张增辉, 闫佳宁, 等 . 基于特征根有界摄动分析的高超声速飞行器双通道控制[J]. 北京航空航天大学学报, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053
引用本文: 杨雨宸, 张增辉, 闫佳宁, 等 . 基于特征根有界摄动分析的高超声速飞行器双通道控制[J]. 北京航空航天大学学报, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053
YANG Yuchen, ZHANG Zenghui, YAN Jianing, et al. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053(in Chinese)
Citation: YANG Yuchen, ZHANG Zenghui, YAN Jianing, et al. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053(in Chinese)

基于特征根有界摄动分析的高超声速飞行器双通道控制

doi: 10.13700/j.bh.1001-5965.2021.0053
基金项目: 

国家自然科学基金 61273099

国家自然科学基金 61304030

详细信息
    通讯作者:

    杨凌宇, E-mail: yanglingyu@buaa.edu.cn

  • 中图分类号: V249.12

Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues

Funds: 

National Natural Science Foundation of China 61273099

National Natural Science Foundation of China 61304030

More Information
  • 摘要:

    针对双通道控制高超声速飞行器横侧向欠驱动、强不确定性的特点,研究了适用于工程应用的控制策略,提出一种基于特征根有界摄动分析的反馈控制鲁棒性分析方法。基于线性化近似分析和工程约束需求,给出了双通道飞行器改善荷兰滚模态动态的2种控制策略,分别为极点配置方案和模态解耦方案。提出了特征根灵敏度矩阵和有界摄动矩阵的概念,用于评估闭环系统对参数不确定的鲁棒性。基于闭环六自由度模型在标称及参数拉偏情况下,对2种方案进行了综合分析和仿真验证。仿真结果表明,2种控制方案均可以解决双通道控制问题,所提特征根有界摄动分析方法可准确评估系统的鲁棒性。

     

  • 图 1  Winged-Cone气动布局[12]

    Figure 1.  Winged-Cone pneumatic layout[12]

    图 2  螺旋与滚转阻尼模态极点

    Figure 2.  Spiral mode and roll-damping mode poles

    图 3  荷兰滚阻尼比随迎角和马赫数变化曲线

    Figure 3.  Dutch roll damping ratio with angle of attack and Mach number

    图 4  气动系数随马赫数变化曲线

    Figure 4.  Aerodynamic coefficients with Mach number

    图 5  飞行包线内ξ相对估计误差

    Figure 5.  Relative estimation error of ξ in flight envelope

    图 6  飞行包线内ω相对估计误差

    Figure 6.  Relative estimation error of ω in flight envelope

    图 7  方案1极点受Lp扰动的影响

    Figure 7.  Poles of method 1 vary with Lp

    图 8  方案1倾侧角响应

    Figure 8.  Bank angle response of method 1

    图 9  方案1侧滑角响应

    Figure 9.  Sideslip angle response of method 1

    图 10  方案1舵面响应

    Figure 10.  Aileron response of method

    图 11  方案2极点受扰动的影响

    Figure 11.  Poles of method 2 vary with uncertainties

    图 12  方案2倾侧角响应

    Figure 12.  Bank angle response of method 2

    图 13  方案2侧滑角响应

    Figure 13.  Sideslip angle response of method 2

    图 14  方案2舵面响应

    Figure 14.  Aileron response of method 2

    表  1  Winged-Cone主要参数

    Table  1.   Key parameters of Winged-Cone

    参数 数值
    S/m2 334.73
    c/m 24.384
    b/m 18.288
    m/kg 136 080
    Ix/(kg·m2) 915 300
    Iy/(kg·m2) 9 036 000
    Iz/(kg·m2) 9 036 000
    Xcg/m -3.5
    下载: 导出CSV
  • [1] 任章, 白辰. 高超声速飞行器飞行控制技术研究综述[J]. 导航定位与授时, 2015, 2(6): 1-6. doi: 10.3969/j.issn.2095-8110.2015.06.001

    REN Z, BAI C. The overview of difficulties and methods of hypersonic vehicle flight control[J]. Navigation Positioning and Timing, 2015, 2(6): 1-6(in Chinese). doi: 10.3969/j.issn.2095-8110.2015.06.001
    [2] XU B, SHI Z K. An overview on flight dynamics and control approaches for hypersonic vehicles[J]. Science China: Information Sciences, 2015, 58: 1-19.
    [3] WALKER S, SHERK J, SHELL D, et al. The DARPA/AF falcon program: The hypersonic technology vehicle #2 (HTV-2) flight demonstration phase: AIAA 2008-2539[R]. Reston: AIAA, 2008: 104526.
    [4] SACHAN K, PADHI R. Nonlinear robust neuro-adaptive flight control for hypersonic vehicles with state constraints[J]. Control Engineering Practice, 2020, 102: 104526. doi: 10.1016/j.conengprac.2020.104526
    [5] ZHU S P, XU T, WEI C S, et al. Learning-based adaptive fault tolerant control for hypersonic flight vehicles with abrupt actuator faults and finite time prescribed tracking performance[J]. European Journal of Control, 2021, 58: 17-26. doi: 10.1016/j.ejcon.2020.12.003
    [6] ZHOU L L, LIU L, CHENG Z T, et al. Adaptive dynamic surface control using neural networks for hypersonic flight vehicle with input nonlinearities[J]. Optimal Control Applications and Methods, 2020, 41(6): 1904-1927. doi: 10.1002/oca.2584
    [7] YANG Y H, SHAO X L, SHI Y. Back-stepping robust control for flexible air-breathing hypersonic vehicle via α-filter-based uncertainty and disturbance estimator[J]. International Journal of Control Automation and Systems, 2021, 19(1): 1-14. doi: 10.1007/s12555-019-0324-x
    [8] WANG Z, BAO W, LI H. Second-order dynamic sliding-mode control for nonminimum phase underactuated hypersonic vehicles[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 3105-3112. doi: 10.1109/TIE.2016.2633530
    [9] 史丽楠, 李惠峰, 张冉. 滑翔再入飞行器横侧向耦合姿态控制策略[J]. 北京航空航天大学学报, 2016, 42(1): 120-129. doi: 10.13700/j.bh.1001-5965.2015.0037

    SHI L N, LI H F, ZHANG R. Gliding reentry vehicle lateral/directional coupling attitude control strategy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 120-129(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0037
    [10] LI X Q, ZHOU J. Attitude tracking of the under-actuated reentry vehicle with actuator saturation[J]. Fire Control and Command Control, 2016, 41(12): 15-19.
    [11] YE L Q, ZONG Q, CRASSIDIS J L, et al. Output-redefinition-based dynamic inversion control for a nonminimum phase hypersonic vehicle[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3447-3457. doi: 10.1109/TIE.2017.2760246
    [12] KESHMIRI S, COLGREN R, MIRMIRANI M. Six DoF nonlinear equations of motion for a heneric hypersonic vehicle: AIAA 2007-6626[R]. Reston: AIAA, 2007.
    [13] SNELL S A, ENNS D F, GARRARD W L. Nonlinear inversion flight control for a supermaneuverable aircraft[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(4): 976-984. doi: 10.2514/3.20932
    [14] 吴森堂. 飞行控制系统[M]. 2版. 北京: 北京航空航天大学出版社, 2013: 99-101.

    WU S T. Flight control system[M]. 2nd ed. Beijing: Beihang University Press, 2013: 99-101(in Chinese).
    [15] RUDISILL C S. Derivatives of eigenvalues and eigenvectors for a general matrix[J]. AIAA Journal, 1974, 12(5): 721-722.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  126
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-31
  • 录用日期:  2021-02-10
  • 网络出版日期:  2021-02-24
  • 整期出版日期:  2022-10-20

目录

    /

    返回文章
    返回
    常见问答