留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于功耗残差的航天器CMG退化特征提取方法

田利梅 龚梦彤 唐荻音 韩丹阳 于劲松 李春伟

田利梅, 龚梦彤, 唐荻音, 等 . 基于功耗残差的航天器CMG退化特征提取方法[J]. 北京航空航天大学学报, 2022, 48(10): 1899-1905. doi: 10.13700/j.bh.1001-5965.2021.0060
引用本文: 田利梅, 龚梦彤, 唐荻音, 等 . 基于功耗残差的航天器CMG退化特征提取方法[J]. 北京航空航天大学学报, 2022, 48(10): 1899-1905. doi: 10.13700/j.bh.1001-5965.2021.0060
TIAN Limei, GONG Mengtong, TANG Diyin, et al. Degradation indicator extraction for aerospace CMG based on power consumption analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1899-1905. doi: 10.13700/j.bh.1001-5965.2021.0060(in Chinese)
Citation: TIAN Limei, GONG Mengtong, TANG Diyin, et al. Degradation indicator extraction for aerospace CMG based on power consumption analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1899-1905. doi: 10.13700/j.bh.1001-5965.2021.0060(in Chinese)

基于功耗残差的航天器CMG退化特征提取方法

doi: 10.13700/j.bh.1001-5965.2021.0060
基金项目: 

国家自然科学基金 71701008

国家商用飞机制造工程技术研究中心创新基金 COMAC-SFGS-2019-261

详细信息
    通讯作者:

    唐荻音, E-mail: tangdiyin@buaa.edu.cn

  • 中图分类号: V44;TP202+.1

Degradation indicator extraction for aerospace CMG based on power consumption analysis

Funds: 

National Natural Science Foundation of China 71701008

Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing COMAC-SFGS-2019-261

More Information
  • 摘要:

    为实现航天器控制力矩陀螺(CMG)性能退化状态评估,提出了一种基于卷积神经网络(CNN)与功耗残差的CMG退化特征提取方法。由于CMG控制系统对高速转子运动状态的高精准控制,CMG退化特征难以从转子运动状态数据中直接提取。针对该问题,从转子系统的能量损耗角度出发,通过分析CMG工作机理确定了影响单位时间内转子电机功耗的变量,并通过CNN建立了CMG运行状态参数与电机功耗之间的映射。将退化状态下电机实际功耗与模型输出的残差作为退化特征对CMG退化状态进行评价。通过某型号CMG的加速寿命实验数据进行验证,结果表明:构建的退化特征能够表征CMG转子轴承的性能退化情况,从而为CMG状态监测和故障预警提供参考。

     

  • 图 1  SGCMG结构简图

    Figure 1.  Structure sketch of the SGCMG

    图 2  CNN网络结构示意图

    Figure 2.  Architecture of CNN network

    图 3  SGCMG实验平台

    Figure 3.  Experiment platform of SGCMG

    图 4  遥测数据示例

    Figure 4.  Raw data telemetry signals

    图 5  模型训练与功耗估计结果

    Figure 5.  Results of model training and power

    图 6  转子电机功耗残差

    Figure 6.  Residual power consumption of rotor motor

    表  1  退化特征性能对比

    Table  1.   Comparison of degradation indicators performance

    工况 特征 Tred Mon HM
    均值 0.696 1 0.025 3 0.226 5
    均方根 0.696 1 0.025 3 0.226 5
    峰峰值 0.060 4 0.007 5 0.023 4
    偏度 0.024 4 0.002 5 0.009 1
    峭度 0.015 5 0.001 9 0.006 0
    工况1 波形指数 0.006 7 0.001 4 0.003 0
    峰值指数 0.044 4 0.005 3 0.017 0
    裕度指数 0.044 4 0.006 4 0.017 8
    峭度指数 0.046 0 0.003 1 0.015 9
    PCA 0.605 8 0.034 2 0.205 7
    功耗残差 0.942 5 0.003 1 0.284 9
    均值 0.134 2 0.002 0 0.041 6
    均方根 0.134 2 0.002 0 0.041 6
    峰峰值 0.027 8 0.012 4 0.017 0
    偏度 0.004 8 0.012 4 0.010 1
    峭度 0.020 7 0.005 9 0.010 3
    工况2 波形指数 0.012 9 0.024 2 0.020 8
    峰值指数 0.018 1 0.005 9 0.009 6
    裕度指数 0.018 1 0.005 9 0.009 6
    峭度指数 0.008 5 0.007 2 0.007 6
    PCA 0.214 8 0.005 9 0.068 6
    功耗残差 0.843 1 0.009 8 0.259 8
    下载: 导出CSV
  • [1] ZHENG S, HAN B, GUO L. Composite hierarchical antidisturbance control for magnetic bearing system subject to multiple external disturbances[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 7004-7012. doi: 10.1109/TIE.2014.2316226
    [2] LEI Y, LI N, GUO L, et al. Machinery health prognostics: A systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 799-834. doi: 10.1016/j.ymssp.2017.11.016
    [3] WANG D, TSUI K L, MIAO Q. Prognostics and health management: A review of vibration based bearing and gear health indicators[J]. IEEE Access, 2017, 6: 665-676.
    [4] HUANG Z, XU Z, KE X, et al. Remaining useful life prediction for an adaptive skew-Wiener process model[J]. Mechanical Systems and Signal Processing, 2017, 87: 294-306. doi: 10.1016/j.ymssp.2016.10.027
    [5] GUO L, LI N, JIA F, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing, 2017, 240: 98-109. doi: 10.1016/j.neucom.2017.02.045
    [6] JUNG J H, LEE J J, KWON B H. Online diagnosis of induction motors using MCSA[J]. IEEE Transactions on Industrial Electronics, 2006, 53(6): 1842-1852. doi: 10.1109/TIE.2006.885131
    [7] HAN B, ZHENG S, WANG Z, et al. Design, modeling, fabrication, and test of a large-scale single-gimbal magnetically suspended control moment gyro[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7424-7435. doi: 10.1109/TIE.2015.2459052
    [8] LIU J, YAN Z, SHAO Y. An investigation for the friction torque of a needle roller bearing with the roundness error[J]. Mechanism and Machine Theory, 2018, 121: 259-272. doi: 10.1016/j.mechmachtheory.2017.10.028
    [9] STAMMLER M, SCHWACK F, BADER N, et al. Friction torque of wind-turbine pitch bearings-comparison of experimental results with available models[J]. Wind Energy Science, 2018, 3(1): 97-105. doi: 10.5194/wes-3-97-2018
    [10] HEIBERG C. A practical approach to modeling single-gimbal control momentum gyroscopes in agile spacecraft: AIAA-2000-4545[R]. Reston: AIAA, 2000.
    [11] LI H, ZHENG S, NING X. Precise control for gimbal system of double gimbal control moment gyro based on cascade extended state observer[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4653-4661. doi: 10.1109/TIE.2017.2674585
    [12] ATALLAH K, ZHU Z Q, HOWE D. An improved method for predicting iron losses in brushless permanent magnet DC drives[J]. IEEE Transactions on Magnetics, 1992, 28(5): 2997-2999. doi: 10.1109/20.179696
    [13] SHIGEMATSU K, OYAMA J, HIGUCHI T, et al. The study of eddy current in rotor and circuit coupling analysis for small size and ultra-high speed motor[C]//The 4th International Power Electronics and Motion Control Conference. Piscataway: IEEE Press, 2004: 275-279.
    [14] WEN L, LI X, GAO L, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990-5998. doi: 10.1109/TIE.2017.2774777
    [15] INCE T, KIRANYAZ S, EREN L, et al. Real-time motor fault detection by 1-D convolutional neural networks[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7067-7075. doi: 10.1109/TIE.2016.2582729
    [16] ZHANG B, ZHANG L, XU J. Degradation feature selection for remaining useful life prediction of rolling element bearings[J]. Quality and Reliability Engineering International, 2016, 32(2): 547-554. doi: 10.1002/qre.1771
    [17] JAVED K, GOURIVEAU R, ZERHOUNI N, et al. Enabling health monitoring approach based on vibration data for accurate prognostics[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 647-656. doi: 10.1109/TIE.2014.2327917
    [18] WANG Y, PENG Y, ZI Y, et al. A two-stage data-driven-based prognostic approach for bearing degradation problem[J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 924-932. doi: 10.1109/TII.2016.2535368
    [19] WIDODO A, YANG B S. Application of relevance vector machine and survival probability to machine degradation assessment[J]. Expert Systems with Applications, 2011, 38(3): 2592-2599. doi: 10.1016/j.eswa.2010.08.049
    [20] LE S K, FOULADIRAD M, BARROS A, et al. Remaining useful life estimation based on stochastic deterioration models: A comparative study[J]. Reliability Engineering & System Safety, 2013, 112: 165-175.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  105
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-03
  • 录用日期:  2021-04-04
  • 网络出版日期:  2021-04-12
  • 整期出版日期:  2022-10-20

目录

    /

    返回文章
    返回
    常见问答