留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于交通状态的离场航班动态协同排序方法

江灏 刘继新 董欣放

江灏, 刘继新, 董欣放等 . 基于交通状态的离场航班动态协同排序方法[J]. 北京航空航天大学学报, 2022, 48(10): 2048-2060. doi: 10.13700/j.bh.1001-5965.2021.0066
引用本文: 江灏, 刘继新, 董欣放等 . 基于交通状态的离场航班动态协同排序方法[J]. 北京航空航天大学学报, 2022, 48(10): 2048-2060. doi: 10.13700/j.bh.1001-5965.2021.0066
JIANG Hao, LIU Jixin, DONG Xinfanget al. Dynamic collaborative sequencing for departure flights based on traffic state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2048-2060. doi: 10.13700/j.bh.1001-5965.2021.0066(in Chinese)
Citation: JIANG Hao, LIU Jixin, DONG Xinfanget al. Dynamic collaborative sequencing for departure flights based on traffic state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2048-2060. doi: 10.13700/j.bh.1001-5965.2021.0066(in Chinese)

基于交通状态的离场航班动态协同排序方法

doi: 10.13700/j.bh.1001-5965.2021.0066
基金项目: 

南京航空航天大学研究生创新基地(实验室)开放基金 kfjj20200717

详细信息
    通讯作者:

    刘继新, E-mail: Larryljx@163.com

  • 中图分类号: V355.2

Dynamic collaborative sequencing for departure flights based on traffic state

Funds: 

NUAA Graduate Innovation Base (Laboratory) Open Fund kfjj20200717

More Information
  • 摘要:

    为适应协同决策(CDM)需要,考虑空管、航司和机场三方的诉求,对拥挤和非拥挤场景下的离场航班动态协同排序问题进行了系统研究。通过分析离场航班运行特性,利用离场航班的计划撤轮档时间(SOBT)和预计撤轮档时间(EOBT)数据设计了一种离场航班动态排序方法;针对各方构建了离场航班排序的多个优化目标,且为保证排序公平性,提出了航空公司延误公平性评价指标,将非受控离场航班优先级分为3类,对各类非受控离场航班设置其可接受的最大延误时间和最大位置偏移量,创建了基于交通状态的离场航班协同排序模型;采用带精英策略的快速非支配排序遗传算法(NSGA-Ⅱ)寻求离场航班动态协同排序的最优解。仿真结果表明:较先到先服务(FCFS)方法,所提方法在2种场景下各排序时段均增加多种排序方案,离场航班总延误均减少50%以上,且在非拥挤场景下提高了航空公司延误公平性。所提方法可对离场航班进行优化排序,显著减少航班延误,有效提升公平性,契合协同决策理念,可实现三方协同排序。

     

  • 图 1  离场航班动态排序方法流程

    Figure 1.  Flowchart of departure flight dynamic sequencing method

    图 2  算法流程

    Figure 2.  Flowchart of algorithm

    图 3  Pareto最优解(时段1-4)

    Figure 3.  Pareto optimal solution (time interval 1-4)

    图 4  种群进化过程中GD和IGD值变化趋势(时段1-4)

    Figure 4.  Trend of GD and IGD value in process of population evolution (time interval 1-4)

    图 5  Pareto最优解与先到先服务方法结果(时段1-4)

    Figure 5.  Pareto optimal and FCFS solution (time interval 1-4)

    图 6  不同策略下离场航班起飞次序(时段1-4)

    Figure 6.  Sequences of departure flights using different strategies (time interval 1-4)

    图 7  筛选后的Pareto最优解(时段1-4)

    Figure 7.  Selected Pareto optimal solution (time interval 1-4)

    图 8  Pareto最优解(时段2-2)

    Figure 8.  Pareto optimal solution (time interval 1-4)

    图 9  种群进化过程中GD和IGD值变化趋势(时段2-2)

    Figure 9.  Trend of GD and IGD value in process of population evolution (time interval 2-2)

    图 10  Pareto最优解与先到先服务方法结果(时段2-2)

    Figure 10.  Pareto optimal and FCFS solution (time interval 2-2)

    图 11  不同策略下离场航班起飞次序频数(时段2-2)

    Figure 11.  Sequence frequency of departure flights using different strategies (time interval 2-2)

    图 12  筛选后的Pareto最优解(时段2-2)

    Figure 12.  Selected Pareto optimal solution (time interval 2-2)

  • [1] ATKIN J A D, BURKE E K, GREENWOOD J S, et al. Hybrid metaheuristics to aid runway scheduling at London heathrow airport[J]. Transportation Science, 2007, 41(1): 90-106. doi: 10.1287/trsc.1060.0163
    [2] 刘继新, 江灏, 董欣放, 等. 基于空中交通密度的进场航班动态协同排序方法[J]. 航空学报, 2020, 41(7): 323717. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202007025.htm

    LIU J X, JIANG H, DONG X F, et al. Dynamic collaborative sequencing method for arrival flights based on air traffic density[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 323717(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202007025.htm
    [3] ATKIN J A D, BURKE E K, GREENWOOD J S, et al. A metaheuristic approach to aircraft departure scheduling at London Heathrow airport[C]//HICKMAN M, MIRCHANDANI P, VOB S. Computer-aided systems in public transport. Berlin: Springer, 2008, 600: 235-252.
    [4] ATKIN J A D, BURKE E K, GREENWOOD J S, et al. On-line decision support for take-off runway scheduling with uncertain taxi times at London Heathrow airport[J]. Journal of Scheduling, 2008, 11(5): 323-346. doi: 10.1007/s10951-008-0065-9
    [5] BALAKRISHNAN H, CHANDRAN B G. Efficient and equitable departure scheduling in real-time: New approaches to old problems[C]//Proceedings of 7th USA/Europe Air Traffic Management Research and Development Seminar, 2007: 243-252.
    [6] BALAKRISHNAN H, CHANDRAN B G. Algorithms for sche-duling runway operations under constrained position shifting[J]. Operations Research, 2010, 58(6): 1650-1665. doi: 10.1287/opre.1100.0869
    [7] RATHINAM S, WOOD Z, SRIDHAR B, et al. A generalized dynamic programming approach for a departure scheduling pro-blem[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: 6306-6317.
    [8] MONTOYA J, RATHINAM S, WOOD Z. Multiobjective departure runway scheduling using dynamic programming[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 399-413. doi: 10.1109/TITS.2013.2283256
    [9] GUPTA G, MALIK W, JUNG Y. A mixed integer linear program for airport departure scheduling[C]//9th AIAA Aviation Technology, Integration, and Operations Conference(ATIO). Reston: AIAA, 2009: 6933.
    [10] SU W B, PARK J, CLARKE J P. Modified mixed integer linear program for airport departure scheduling[C]//AIAA Gui-dance, Navigation, and Control Conference. Reston: AIAA, 2013: 4885.
    [11] LIU M, SUN Z H, ZHANG X N, et al. A two-stage no-wait hybrid flow-shop model for the flight departure scheduling in a multi-airport system[C]//2017 IEEE 14th International Conference on Networking, Sensing and Control. Piscataway: IEEE Press, 2017: 495-500.
    [12] SÖLVELING G, CLARKE J P. Scheduling of airport runway operations using stochastic branch and bound methods[J]. Transportation Research Part C: Emerging Technologies, 2014, 45: 119-137. doi: 10.1016/j.trc.2014.02.021
    [13] 王菲, 张军峰, 葛腾腾, 等. 基于分支定界的离场航空器动态排序[J]. 南京航空航天大学学报, 2015, 47(4): 547-552. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201504011.htm

    WANG F, ZHANG J F, GE T T, et al. Dynamic departure sequencing based on branch and bound algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(4): 547-552(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201504011.htm
    [14] 尹嘉男, 胡明华, 张洪海, 等. 独立离场模式下多跑道时空资源优化调度方法[J]. 航空学报, 2015, 36(5): 1574-1584. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201505021.htm

    YIN J N, HU M H, ZHANG H H, et al. Optimized method for multi-runway spatio-temporal resource scheduling in the mode of independent departures[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1574-1584(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201505021.htm
    [15] ZHANG H F, HU M H. Optimization method for departure flight scheduling problem based on genetic algorithm[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(4): 477-484. doi: 10.3969/j.issn.1005-1120.2015.04.016
    [16] ZHONG H, GUAN W, ZHANG W Y, et al. A bi-objective integer programming model for partly-restricted flight departure scheduling[J]. PLoS One, 2018, 13(5): e0196146. doi: 10.1371/journal.pone.0196146
    [17] HU X B, CHEN W H. Receding horizon control for aircraft arrival sequencing and scheduling[J]. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(2): 189-197. doi: 10.1109/TITS.2005.848365
    [18] FAIRBROTHER J, ZOGRAFOS K G, GLAZEBROOK K D. A slot-scheduling mechanism at congested airports that incorporates efficiency, fairness, and airline preferences[J]. Transportation Science, 2020, 54(1): 115-138. doi: 10.1287/trsc.2019.0926
    [19] DEAR R G, SHERIF Y S. An algorithm for computer assisted sequencing and scheduling of terminal area operations[J]. Transportation Research Part A: General, 1991, 25(2-3): 129-139. https://www.sciencedirect.com/science/article/pii/019126079190132A
    [20] 马园园, 胡明华, 张洪海, 等. 多机场终端区进场航班协同排序方法[J]. 航空学报, 2015, 36(7): 2279-2290. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201507020.htm

    MA Y Y, HU M H, ZHANG H H, et al. Optimized method for collaborative arrival sequencing and scheduling in metroplex terminal area[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2279-2290(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201507020.htm
    [21] 徐肖豪, 李善梅. 空中交通拥挤的识别与预测方法研究[J]. 航空学报, 2015, 36(8): 2753-2763. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201508023.htm

    XU X H, LI S M. Identification and prediction of air traffic congestion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2753-2763(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201508023.htm
    [22] MALIK W, JUNG Y C. Exact and heuristic algorithms for runway scheduling[C]//16th AIAA Aviation Technology, Integration, and Operations Conference (ATIO). Reston: AIAA, 2016: 4072.
    [23] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
    [24] 郑金华, 邹娟. 多目标进化优化[M]. 北京: 科学出版社, 2017: 164-165, 176.

    ZHENG J H, ZOU J. Multi-objective evolutionary optimization[M]. Beijing: Science Press, 2017: 164-165, 176(in Chinese).
  • 加载中
图(12)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  117
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05
  • 录用日期:  2021-03-29
  • 网络出版日期:  2021-04-16
  • 整期出版日期:  2022-10-20

目录

    /

    返回文章
    返回
    常见问答