留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PSO-BP神经网络的平流层风场短期快速预测

龙远 邓小龙 杨希祥 侯中喜

龙远, 邓小龙, 杨希祥, 等 . 基于PSO-BP神经网络的平流层风场短期快速预测[J]. 北京航空航天大学学报, 2022, 48(10): 1970-1978. doi: 10.13700/j.bh.1001-5965.2021.0068
引用本文: 龙远, 邓小龙, 杨希祥, 等 . 基于PSO-BP神经网络的平流层风场短期快速预测[J]. 北京航空航天大学学报, 2022, 48(10): 1970-1978. doi: 10.13700/j.bh.1001-5965.2021.0068
LONG Yuan, DENG Xiaolong, YANG Xixiang, et al. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1970-1978. doi: 10.13700/j.bh.1001-5965.2021.0068(in Chinese)
Citation: LONG Yuan, DENG Xiaolong, YANG Xixiang, et al. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1970-1978. doi: 10.13700/j.bh.1001-5965.2021.0068(in Chinese)

基于PSO-BP神经网络的平流层风场短期快速预测

doi: 10.13700/j.bh.1001-5965.2021.0068
基金项目: 

国家自然科学基金 6190021731

国家部委基金 GFZX04021403

国家部委基金 20191A0X0233

国防科技大学科研计划 ZK18-03-54

详细信息
    通讯作者:

    邓小龙, E-mail: xiaolong.deng@outlook.com

  • 中图分类号: V321.2

Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network

Funds: 

National Natural Science Foundation of China 6190021731

National Ministries Foundation of China GFZX04021403

National Ministries Foundation of China 20191A0X0233

NUDT Research Program ZK18-03-54

More Information
  • 摘要:

    平流层风场环境对临近空间低速飞行器驻空飞行性能有重要影响。研究了基于PSO-BP神经网络的平流层区域风场建模与快速预测方法,根据历史风场数据,采用主成分分析法对数据进行降维处理,通过BP神经网络对风场进行预测建模,利用粒子群优化(PSO)算法对其进行优化,采用Biharmonic样条曲面插值方法构建区域预测风场。以南海地区5年历史风场为对象,对比分析了基于BP神经网络和基于PSO-BP神经网络的风场预测模型,结果表明:使用具有全局寻优特性的PSO算法改进BP神经网络,能够有效避免传统BP神经网络易陷入局部最优的缺点,提高预测精度;通过结合PSO-BP神经网络预测与Biharmonic样条曲面插值,可实现区域风场的预测。研究结果可为临近空间低速飞行器的轨迹规划与区域驻留等任务的高精度区域快速预报风场提供解决途径。

     

  • 图 1  神经网络结构

    Figure 1.  Structure of neural network

    图 2  神经网络的输入和输出

    Figure 2.  Input and output of neural network

    图 3  PSO算法的BP神经网络原理

    Figure 3.  Schematic diagram of BP neural network optimized by particle swarm optimization algorithm

    图 4  海拔5~15 km东西方向风场数据降维后的第n阶相对模态能量及前n阶累积模态能量

    Figure 4.  The n-th order relative modal energy and the first n-order cumulative modal energy of east-west wind field data after dimensionality reduction between 5 km and 15 km

    图 5  海拔15~30 km东西方向风场数据降维后的第n阶相对模态能量及前n阶累积模态能量

    Figure 5.  The n-th order relative modal energy and the first n-order cumulative modal energy of east-west wind field data after dimensionality reduction between 15 km and 30 km

    图 6  东西方向上降维后的风场数据与实际风场数据对比

    Figure 6.  Comparison of east-west wind field data after dimensionality reduction and actual wind field data

    图 7  海拔5~15 km南北方向风场数据降维后的第n阶相对模态能量及前n阶累积模态能量

    Figure 7.  The n-th order relative modal energy and the first n-order cumulative modal energy of north-south wind field data after dimensionality reduction between 5 km and 15 km

    图 8  海拔15~30 km南北方向风场数据降维后的第n阶相对模态能量及前n阶累积模态能量

    Figure 8.  The n-th order relative modal energy and the first n-order cumulative modal energy of north-south wind field data after dimensionality reduction between 15 km and 30 km

    图 9  南北方向上降维后的风场数据与实际风场数据对比

    Figure 9.  Comparison of north-south wind field data after dimensionality reduction and actual wind field data

    图 10  东西方向上BP神经网络10次预测结果与实际风场对比

    Figure 10.  Comparison of 10 prediction results of BP neural network and actual wind field in east-west direction

    图 11  东西方向上PSO-BP神经网络10次预测结果与实际风场对比

    Figure 11.  Comparison of 10 prediction results of PSO-BP neural network and actual wind field in east-west direction

    图 12  东西方向上2种神经网络10次预测结果平均误差对比

    Figure 12.  Comparison of average error of 10 prediction results for two kinds of neural networks in east-west direction

    图 13  南北方向上BP神经网络10次预测结果与实际风场对比

    Figure 13.  Comparison of 10 prediction results of BP neural network and actual wind field in north-south direction

    图 14  南北方向上PSO-BP神经网络10次预测结果与实际风场对比

    Figure 14.  Comparison of 10 prediction results of PSO-BP neural network and actual wind field in the north-south direction

    图 15  南北方向上2种神经网络10次预测结果平均误差对比

    Figure 15.  Comparison of average error of 10 prediction results for two kinds of neural networks in north-south direction

    图 16  东西方向上20 km高度的区域风速示意图

    Figure 16.  Schematic diagram of regional wind speed in east-west direction at 20 km

    图 17  南北方向上20 km高度的区域风速示意图

    Figure 17.  Schematic diagram of regional wind speed in north-south direction at 20 km

    图 18  两种风场模型下飞行器的轨迹示意图

    Figure 18.  Schematic diagram of trajectory for aircraft under two wind field models

  • [1] 赵达, 刘东旭, 孙康文, 等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报, 2016, 37(1): 45-56. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201601004.htm

    ZHAO D, LIU D X, SUN K W, et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 45-56(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201601004.htm
    [2] LI Y, SHENG Z, JING J R. Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data[J]. Earth Planet Physics, 2019, 3(5): 414-424. doi: 10.26464/epp2019040
    [3] WANG J, MENG X, LI C. Recovery trajectory optimization of the solar-powered stratospheric airship for the station-keeping mission[J]. Acta Astronautica, 2021, 178: 159-177. doi: 10.1016/j.actaastro.2020.08.016
    [4] 顾逸东. 气球科学观测100年[J]. 现代物理知识, 2020, 32(2): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XDWZ202002001.htm

    GU Y D. 100 years of scientific observation of balloons[J]. Modern Physics, 2020, 32(2): 3-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDWZ202002001.htm
    [5] WEI J, MA R, HOU X, et al. Analysis of the thermodynamical property of super-pressure balloons[J]. Acta Mechanica, 2019, 230(4): 1355-1366. doi: 10.1007/s00707-017-2021-2
    [6] 杨燕初, 张航悦, 赵荣. 零压式高空气球球形设计与参数敏感性分析[J]. 国防科技大学学报, 2019, 41(1): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201901009.htm

    YANG Y C, ZHANG H Y, ZHAO R. Shape design of zero pre-ssure high altitude balloon and sensitivity analysis of key para-meters[J]. Journal of National University of Defense Technology, 2019, 41(1): 58-64(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201901009.htm
    [7] 聂春雨, 祝明, 郑泽伟, 等. 基于Q-Learning算法和神经网络的飞艇控制[J]. 北京航空航天大学学报, 2017, 43(12): 2431-2438. doi: 10.13700/j.bh.1001-5965.2016.0903

    NIE C Y, ZHU M, ZHENG Z W, et al. Airship control based on Q-Learning algorithm and neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2431-2438(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0903
    [8] 郭建国, 周军. 临近空间低动态飞行器控制研究综述[J]. 航空学报, 2014, 35(2): 320-331. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201402003.htm

    GUO J G, ZHOU J. Review of the control of low dynamic vehicles in near space[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 320-331(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201402003.htm
    [9] 史智广, 张小强, 李锦清, 等. 平流层浮空器保压指标对驻空性能的影响[J]. 航空学报, 2016, 37(6): 1833-1840. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201606014.htm

    SHI Z G, ZHANG X Q, LI J Q, et al. Effect of ground pressure-maintenance index on stagnation performance of stratospheric aerostats[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1833-1840(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201606014.htm
    [10] 程晨, 王晓亮. 平流层飞艇热敏感因素分析[J]. 浙江大学学报(工学版), 2020, 54(1): 202-212. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202001024.htm

    CHENG C, WANG X L. Thermal sensitivity factors analysis of stratospheric airships[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(1): 202-212(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202001024.htm
    [11] 姜兆宇, 贾庆山, 管晓宏. 多时空尺度的风力发电预测方法综述[J]. 自动化学报, 2019, 45(1): 51-71. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201901005.htm

    JIANG Z Y, JIA Q S, GUAN X H. A review of multi-temporal-and-spatial-scale wind power forecasting method[J]. Acta Automatica Sinica, 2019, 45(1): 51-71(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201901005.htm
    [12] 邓小龙, 杨希祥, 麻震宇, 等. 基于风场环境利用的平流层浮空器区域驻留关键问题研究进展[J]. 航空学报, 2019, 40(8): 23-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201908002.htm

    DENG X L, YANG X X, MA Z Y, et al. Review of important technologies for station-keeping of stratospheric aerostats based on wind field utilization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 23-36(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201908002.htm
    [13] RAMESH S S, LIM K M, LEE H P, et al. Reduced-order modeling of stratospheric winds and its application in high-altitude balloon trajectory simulations[J]. Journal of Applied Meteorology and Climatology, 2017, 56(6): 1753-1766.
    [14] 胡亮, 顾明, 李黎. 基于本征正交分解的谱表示法模拟风场的误差[J]. 振动与冲击, 2011, 30(4): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201104006.htm

    HU L, GU M, LI L. Errors produced with proper orthogonal decomposition-based spectral representation method in wind velocity field simulation[J]. Journal of Vibration and Shock, 2011, 30(4): 12-15(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201104006.htm
    [15] RONEY J A. Statistical wind analysis for near-space applications[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69: 1485-1501.
    [16] 孙斌, 姚海涛, 刘婷. 基于高斯过程回归的短期风速预测[J]. 中国电机工程学报, 2012, 32(29): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201229016.htm

    SUN B, YAO H T, LIU T. Short-term wind speed forecasting based on gaussian process regression model[J]. Proceedings of the CSEE, 2012, 32(29): 104-109(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201229016.htm
    [17] 梁智, 孙国强, 俞娜燕, 等. 基于高斯过程回归和粒子滤波的短期风速预测[J]. 太阳能学报, 2020, 41(3): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202003007.htm

    LIANG Z, SUN G Q, YU N Y, et al. Short-term wind speed forecasting based on Gaussian process regression and particle filter[J]. Acta Energiae Solaris Sinica, 2020, 41(3): 45-51(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX202003007.htm
    [18] 李魁, 邓小龙, 杨希祥, 等. 基于本征正交分解的平流层风场建模与预测[J]. 北京航空航天大学学报, 2018, 44(9): 2013-2020. doi: 10.13700/j.bh.1001-5965.2017.0685

    LI K, DENG X L, YANG X X, et al. Reduced order modeling and prediction of stratospheric winds based on the proper orthogonal decomposition method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 2013-2020(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0685
    [19] BELLEMARE M G, CANDIDO S, CASTRO P S, et al. Autonomous navigation of stratospheric balloons using reinforcement learning[J]. Nature, 2020, 588(7836): 77-82.
    [20] ZHOU W, ZHOU P, WANG Y, et al. Station-keeping control of an underactuated stratospheric airship[J]. International Journal of Fuzzy Systems, 2019, 21(3): 715-732.
    [21] 张泰华, 姜鲁华, 周江华. 放飞过程中平流层飞艇运动与受力分析[J]. 北京航空航天大学学报, 2018, 44(4): 691-699. doi: 10.13700/j.bh.1001-5965.2017.0227

    ZHANG T H, JIANG L H, ZHOU J H. Kinematic and mechanical analysis on launch process of stratospheric airship[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 691-699(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0227
  • 加载中
图(18)
计量
  • 文章访问数:  413
  • HTML全文浏览量:  111
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-06
  • 录用日期:  2021-04-09
  • 网络出版日期:  2021-04-14
  • 整期出版日期:  2022-10-20

目录

    /

    返回文章
    返回
    常见问答