留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多级降压调节阀内部流动特性数值模拟

方毅芳 项高翔 唐春娥 石月娟

方毅芳, 项高翔, 唐春娥, 等 . 多级降压调节阀内部流动特性数值模拟[J]. 北京航空航天大学学报, 2022, 48(10): 1915-1924. doi: 10.13700/j.bh.1001-5965.2021.0070
引用本文: 方毅芳, 项高翔, 唐春娥, 等 . 多级降压调节阀内部流动特性数值模拟[J]. 北京航空航天大学学报, 2022, 48(10): 1915-1924. doi: 10.13700/j.bh.1001-5965.2021.0070
FANG Yifang, XIANG Gaoxiang, TANG Chun'e, et al. Numerical simulation on internal flow performances of multi-stage pressure drop valve[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1915-1924. doi: 10.13700/j.bh.1001-5965.2021.0070(in Chinese)
Citation: FANG Yifang, XIANG Gaoxiang, TANG Chun'e, et al. Numerical simulation on internal flow performances of multi-stage pressure drop valve[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1915-1924. doi: 10.13700/j.bh.1001-5965.2021.0070(in Chinese)

多级降压调节阀内部流动特性数值模拟

doi: 10.13700/j.bh.1001-5965.2021.0070
基金项目: 

国家重点研发计划 2018YFB2004000

详细信息
    通讯作者:

    方毅芳, FANG Yifang, E-mail: yifang@instrnet.com

  • 中图分类号: V221+.3;TH214

Numerical simulation on internal flow performances of multi-stage pressure drop valve

Funds: 

National Key R & D Program of China 2018YFB2004000

More Information
  • 摘要:

    为研究多级降压调节阀内部流动过程和各降压级的压降影响因素及规律,基于Mixture两相流模型和Schnerr-Sauer空化模型的数值计算方法,建立了多级降压调节阀内部流场的计算模型。通过数值模拟计算,获得了调节阀内部的流动特性,分析和探讨不同压差和不同阀门开度下各降压级压降特性。数值计算结果表明:流体流经阀门节流元件时,由于多股流体的强烈掺混和剪切使得阀门内存在大量的漩涡;各降压级的压降存在一定的差异,第3级套筒处的空化程度最大,阀座处更易发生空化;阀门在同一开度下,工质沿各降压级的压降在不同压差下的变化趋势相同;第3降压级的压降随阀门开度的减小而增大,在25%开度下阀门第3降压级的平均压降最大,达到了8 MPa,相同流量下该降压级小孔中工质的速度也增加。研究结果为降压阀的合理设计提供了理论依据和参考价值。

     

  • 图 1  多级降压调节阀剖视图

    Figure 1.  Sectional view of multi-stage pressure drop valve

    图 2  多级降压调节阀流体域模型

    Figure 2.  Fluid domain model of multi-stage pressure drop valve

    图 3  多级降压调节阀的整体网格划分

    Figure 3.  Integral meshing of multi-stage pressure drop valve

    图 4  多级降压调节阀的局部网格划分

    Figure 4.  Local meshing of part of multi-stage pressure drop valve

    图 5  阀门中心线上压力分布

    Figure 5.  Pressure distribution at the median of valve

    图 6  阀门中间截面的压力分布(实验组1)

    Figure 6.  Pressure distribution at the middle section of valve(case1)

    图 7  阀门中间截面的速度分布(实验组1)

    Figure 7.  Velocity distribution at the middle section of valve(case1)

    图 8  阀门内部的涡量分布(Q=1)

    Figure 8.  Vortex distribution inside valve(Q=1)

    图 9  阀门中间截面的气相分布(实验组1)

    Figure 9.  Vapor distribution at the middle section of valve(case1)

    图 10  阀门进口质量流量随开度的变化(实验组1)

    Figure 10.  Mass flow rate at valve inlet versus valve opening degree(case1)

    图 11  不同开度下的压降变化

    Figure 11.  Variation of pressure drop under different opening degree

    图 12  实验组1的静压分布云图(开度25%)

    Figure 12.  Static pressure distribution of case 1 (opening degree 25%)

    图 13  不同开度下实验组1的静压分布云图

    Figure 13.  Static pressure distribution of case1 under different opening degree

    图 14  不同开度下降压级的压降变化(实验组1)

    Figure 14.  Pressure drop variation of pressure-descending stages under different opening degree (case1)

    图 15  实验组1的速度分布云图

    Figure 15.  Velocity distribution of case1

    图 16  不同开度下降压级的压降变化(实验组4)

    Figure 16.  Pressure drop variation of pressure-descending Stages under different opening degree (case4)

    图 17  第1~3级套筒沿流向中心线速度分布曲线

    Figure 17.  Velocity distribution curves of the 1st~3rd stage sleeve along the centerline flow direction

    图 18  第1~3级套筒沿流向中心线静压分布曲线

    Figure 18.  Static pressure distribution curves of the 1st~3rd stage sleeve along the centerline flow direction

    表  1  不同工况条件实验组阀门的进出口压力及压差

    Table  1.   Inlet and outlet pressures and pressure differe under different conditions

    工况 进口压力/ MPa 出口压力/ MPa 进出口压差/ MPa
    实验组1 8.82 0.21 8.61
    实验组2 9.4 0.15 9.25
    实验组3 9.4 0.1 9.3
    实验组4 9.4 0.05 9.35
    下载: 导出CSV

    表  2  关键数值计算方法

    Table  2.   Key numerical calculation methods

    类别 数值方法
    压力-速度耦合形式 PISO
    湍流模型 IDDES
    多相流模型 Mixture
    空化模型 Schnerr & Sauer
    下载: 导出CSV

    表  3  网格类别

    Table  3.   Mesh specifications

    网格类型 网格数量 质量流量/(kg·s-1)
    M1(粗糙) 7.326×106 15.982 3
    M2(中等) 12.03×106 16.233 3
    M3(精细) 17.58×106 16.517 8
    下载: 导出CSV
  • [1] 陆培文. 实用阀门设计手册[M]. 3版. 北京: 机械工业出版社, 2012: 1315-1416.

    LU P W. Design manual of practical valve[M]. 3rd ed. Beijing: China Machine Press, 2012: 1315-1416(in Chinese).
    [2] 刘芳. 控制阀闪蒸和空化现象及阻塞流的计算[J]. 石油化工自动化, 2010, 46(2): 64-65. https://www.cnki.com.cn/Article/CJFDTOTAL-LYHG201002020.htm

    LIU F. Control valve flash and cavitation phenomenon and the calculation of blocking flow[J]. Automation in Petro-Chemical, 2010, 46(2): 64-65(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LYHG201002020.htm
    [3] 王燕, 胡建华, 胡建, 等. 多级套筒调节阀消声减振元件设计研究[J]. 流体机械, 2013, 41(7): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX201307006.htm

    WANG Y, HU J H, HU J, et al. Design and research of noise elimination and vibration reduction sleeve in control valve[J]. Fluid Machinery, 2013, 41(7): 19-22(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX201307006.htm
    [4] FRANZONI F, MILANI M, MONTORSI L. Cavitating flows in hydraulic multidimensional CFD analysis[J]. Journal of Sexual Medicine, 2008, 1(1): 424-436.
    [5] BERNAD S I, SUSAN-RESIGA R. Numerical model for cavitational flow in hydraulic poppet valves[J]. Modelling and Simulation in Engineering, 2012, 2012: 742162.
    [6] ZARYANKIN A E, ZROICHIKOV N A, PARAMONOV A N, et al. Pressure pulsations in the turbine steam-admission path and their influence on the vibration state of the turbine control valves[J]. Thermal Engineering, 2012, 59(2): 106-112. doi: 10.1134/S0040601512020176
    [7] SHIN C H. A numerical study on the characteristics of transient flow in a pressure regulator resulting from closure of the pressure control valve[J]. Journal of Mechanical ence and Technology, 2013, 27(2): 443-449. doi: 10.1007/s12206-012-1257-y
    [8] 项美根, 孙晓霞. 用多级降压法消除电厂调节阀气蚀[J]. 流体工程, 1992(11): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX199211009.htm

    XIANG M G, SUN X X. Eliminate cavitation in power plant regulating valve with multi-stage pressure reduction method[J]. Fluid Engineering, 1992(11): 58-61(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX199211009.htm
    [9] 蒋玲. 浅谈一种多级降压高压差结构在放空阀中的应用设计[J]. 仪器仪表用户, 2018, 25(8): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYQ201808024.htm

    JIANG L. Application design of a multi stage buck high pre-ssure differential structure in vent valve[J]. Instrumentation Customers, 2018, 25(8): 54-56(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZYQ201808024.htm
    [10] 顾成果. 套筒调节阀套筒结构的设计与分析[J]. 阀门, 2010(4): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-FAME201004003.htm

    GU C G. Design & analysis for sleeve structure of the cage control valve[J]. Valve, 2010(4): 8-10(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FAME201004003.htm
    [11] 徐晓刚, 王天龙, 李树勋, 等. 高温高压降多级套筒调节阀噪声抑制研究[J]. 自动化与仪器仪表, 2016(1): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYY201601003.htm

    XU X G, WANG T L, LI S X, et al. Research on noise suppression of multi-stage sleeve control valve with high temperature and high pressure drop[J]. Automation and Instrumentation, 2016(1): 4-6(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYY201601003.htm
    [12] 彭健, 何世权. 高压调节阀结构改进与汽蚀仿真[J]. 液压与气动, 2019(3): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ201903022.htm

    PENG J, HE S Q. Structural improvement and cavitation simulation of high pressure regulating valve[J]. Chinese Hydraulics & Pneumatics, 2019(3): 120-125(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYYQ201903022.htm
    [13] 李树勋, 王天龙, 徐晓刚, 等. 高压降套筒式蒸汽疏水阀振动特性研究[J]. 振动与冲击, 2018, 37(4): 147-152. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201804022.htm

    LI S X, WANG T L, XU X G, et al. A study on the vibration characteristics of high pressure drop sleeve trap[J]. Journal of Vibration and Shock, 2018, 37(4): 147-152(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201804022.htm
    [14] 李树勋, 康云星, 孟令旗, 等. 多级降压疏水调节阀流致噪声数值模拟研究[J]. 振动与冲击, 2020, 39(14): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202014017.htm

    LI S X, KANG Y X, MENG L Q, et al. Flow-induced noise of a high pressure drop control valve[J]. Journal of Vibration and Shock, 2020, 39(14): 116-121(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202014017.htm
    [15] 武世敏. 迷宫式调节阀流通能力的研究[D]. 银川: 宁夏大学, 2014: 20-37.

    WU S M. The research of flow characteristic and pressure reducing mechanism of labyrinth steam conditioning control valve[D]. Yinchuan: Ningxia University, 2014: 20-37(in Chinese).
    [16] SHUR M L, SPALART P R M K, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649.
    [17] GRITSKEVICH M S, GARBARUK A V, SCHUTZE J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow, Turbulence and Combustion, 2012, 88(3): 431-449.
    [18] MANNINEN M, TAIVASSALO V, KALLIO S. On the mixture model for multiphase flow[M]. Espoo: VTT Publications, 1996: 11-59.
    [19] SCHILLER L, NAUMANN A. A drag coefficient correlation[J]. Zeitschrift des Vereins Deutscher Ingenieure, 1935, 77: 318-320.
    [20] SHABIL S I. Physical and numerical modeling of unsteady cavitation dynamics[C]//4th International Conference on Multiphase Flow, 2001: 1-12.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  127
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-02
  • 录用日期:  2021-05-11
  • 网络出版日期:  2021-06-15
  • 整期出版日期:  2022-10-20

目录

    /

    返回文章
    返回
    常见问答