留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同温控模式下直升机惰化系统性能对比

白文涛 刘国田 邹博 王晨臣 陈广豪 冯诗愚

白文涛, 刘国田, 邹博, 等 . 不同温控模式下直升机惰化系统性能对比[J]. 北京航空航天大学学报, 2022, 48(10): 2040-2047. doi: 10.13700/j.bh.1001-5965.2021.0073
引用本文: 白文涛, 刘国田, 邹博, 等 . 不同温控模式下直升机惰化系统性能对比[J]. 北京航空航天大学学报, 2022, 48(10): 2040-2047. doi: 10.13700/j.bh.1001-5965.2021.0073
BAI Wentao, LIU Guotian, ZOU Bo, et al. Performance comparison of helicopter inerting system under different temperature control modes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2040-2047. doi: 10.13700/j.bh.1001-5965.2021.0073(in Chinese)
Citation: BAI Wentao, LIU Guotian, ZOU Bo, et al. Performance comparison of helicopter inerting system under different temperature control modes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2040-2047. doi: 10.13700/j.bh.1001-5965.2021.0073(in Chinese)

不同温控模式下直升机惰化系统性能对比

doi: 10.13700/j.bh.1001-5965.2021.0073
基金项目: 

国家自然科学基金 U1933121

南京航空航天大学研究生创新基地(实验室)开放基金 kfjj20200110

中央高校基本科研业务费专项资金 

江苏高校优势学科建设工程 

详细信息
    通讯作者:

    冯诗愚, E-mail: shiyuf@nuaa.edu.cn

  • 中图分类号: V37;V219

Performance comparison of helicopter inerting system under different temperature control modes

Funds: 

National Natural Science Foundation of China U1933121

Nanjing University of Aeronautics and Astronautics Postgraduate Innovation Base (Laboratory) Open Fund kfjj20200110

The Fundamental Research Funds for the Central Universities 

Priority Academic Program Development of Jiangsu Higher Education Institutions 

More Information
  • 摘要:

    以某直升机机载中空纤维膜惰化系统为研究对象,设计了电控阀控温和变频风扇控温2种系统。基于AMESim平台以分离膜数学模型计算数据为基础,搭建机载惰化系统,在飞行包线下,研究了2种温控模式的控温效果、不同飞行阶段的惰化系统性能变化及关键参数对其影响。计算结果表明:电控阀控温系统在整个飞行过程均能将引气温度维持在目标温度90℃,在起飞之后富氮气体(NEA)氮体积分数全程维持在91.5%~96.4%之间,所需引气流量为40~243 kg/h,空载燃油箱气相空间氧体积分数可在180 s内降至9%,且保持全程低于9%;变频风扇控温系统在满足爬升、加速、俯冲高温阶段控温惰化要求的选型前提下,在低速、高速巡航阶段,引气被过度冷却至0℃左右,虽然所需引气流量低至26 kg/h,但NEA氮体积分数大幅下降至81%,燃油箱气相空间氧体积分数高达18%,在巡航阶段,飞行速度越大,引气温降越大,且巡航高度越低,为满足控温效果所需的最低巡航速度越低。

     

  • 图 1  控温系统示意图

    Figure 1.  Schematic diagram of temperature control system

    图 2  两种控温系统的AMESim模型

    Figure 2.  Two temperature control system models based on AMESim

    图 3  飞行高度、引气压力及引气温度随时间变化关系

    Figure 3.  Flight altitude, pressure and temperature of bleed air with time

    图 4  中空纤维膜模型准确性验证

    Figure 4.  Verification of accuracy of hollow fiber membrane

    图 5  不同温度、压力下的分离特性

    Figure 5.  Separation characteristics at different temperatures and pressures

    图 6  两种系统控温效果对比

    Figure 6.  Comparison of temperature control effect of two systems

    图 7  NEA氮体积分数随时间变化

    Figure 7.  Variation of N2 volume fraction in NEA with time

    图 8  NEA流量、引气流量、分离效率随时间变化

    Figure 8.  Variation of NEA, bleed air flowrate and separation efficiency with time

    图 9  气相空间氧体积分数随时间变化

    Figure 9.  Variation of O2 volume fraction on ullage with flight time

    图 10  风扇转速、马赫数、冲压空气流量随时间变化

    Figure 10.  Variation of rotational speed, Mach number and flow rate of bleed air with flight tim

    图 11  不同巡航高度、马赫数下的控温效果

    Figure 11.  Temperature control ability at different cruise altitude and Mach number

    图 12  不同巡航高度、马赫数下的冲压空气流量

    Figure 12.  Impressed flow rate of bleed air at different cruise altitude and Mach number

    表  1  换热器尺寸

    Table  1.   Size of heat exchanger

    参数 电控阀控温系统 变频风扇控温系统
    冷边流道当量直径/mm 1.12 1.083
    热边流道当量直径/mm 0.583 0.56
    冷边空气流通面积/mm2 11 773.1 5 616
    热边空气流通面积/mm2 756 1 500.8
    冷边对流换热面积/mm2 2 451 710 2 830 850
    热边对流换热面积/mm2 1 703 810 2 126 850
    下载: 导出CSV
  • [1] ANDERSON C, GRENICH A, TOLLE F, et al. Performance tests of two inert gas generator concepts for airplane fuel tank inerting[C]//19th Joint Propulsion Conference. Reston: AIAA, 1983: 1140.
    [2] KNIGHT T, RITTER J. The AH-64A nitrogen inerting system[C]//Aircraft Design Systems and Operations Meeting. Reston: AIAA, 1984: 2480.
    [3] 刘小芳, 刘卫华. 飞机供氧和燃油箱惰化技术概况[J]. 北华航天工业学院学报, 2008, 18(3): 4-7. doi: 10.3969/j.issn.1673-7938.2008.03.002

    LIU X F, LIU W H. Outline of airborne oxygen supplied and its fuel tanks inerted[J]. Journal of North China Institute of Aerospace Engineering, 2008, 18(3): 4-7(in Chinese). doi: 10.3969/j.issn.1673-7938.2008.03.002
    [4] 肖再华. 飞机燃油箱惰化[J]. 航空科学技术, 2005, 16(1): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX200501009.htm

    XIAO Z H. Inerting aircraft fuel tanks[J]. Aeronautical Science and Technology, 2005, 16(1): 31-33(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX200501009.htm
    [5] 卢吉. 机载空分装置及惰化系统的理论研究[D]. 南京: 南京航空航天大学, 2012.

    LU J. Theoretical study of onboard air separation unit and inerting system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
    [6] 邵垒, 刘卫华, 孙兵, 等. 中空纤维膜分离性能实验与预测[J]. 航空动力学报, 2015, 30(4): 800-806. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201504006.htm

    SHAO L, LIU W H, SUN B, et al. Experiment and prediction of separation performance of hollow fiber membrane[J]. Journal of Aerospace Power, 2015, 30(4): 800-806(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201504006.htm
    [7] 闫红敏, 江平, 高永庭. 军用飞机机载制氮系统研究[J]. 沈阳航空工业学院学报, 2005, 22(5): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGX200505003.htm

    YAN H M, JIANG P, GAO Y T. Study on the on-board inert gas generator system of military aircraft[J]. Journal of Shenyang Institute of Aeronautcal Engineering, 2005, 22(5): 12-14(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGX200505003.htm
    [8] 高秀峰, 刘卫华, 熊斌, 等. 飞机燃油箱冲洗惰化过程的理论研究[J]. 西安交通大学学报, 2010, 44(9): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201009005.htm

    GAO X F, LIU W H, XIONG B, et al. Theoretical study of washing inerting process in aircraft fuel tank[J]. Journal of Xi'an Jiaotong University, 2010, 44(9): 16-20(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201009005.htm
    [9] BURNS M, CAVAGE W M. Inerting of a vented aircraft fuel tank test article with nitrogen-enriched air: DOT/FAA/AR-01/6[R]. Washington, D.C. : Office of Aviation Research, 2001.
    [10] CAVAGE W, BOWMAN T. Modeling in-flight inert gas distribution in a 747 center wing fuel tank[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2005: 4906.
    [11] CAVAGE W M. Modeling of in-flight fuel tank inerting for FAA OBIGGS research[R]. [S. l.]: [s. n.], 2007.
    [12] LI C Y, FENG S Y, CHEN C, et al. Performance analysis of aircraft fuel tank inerting system with turbocharger[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(14): 5217-5226.
    [13] 黄雪飞, 刘文怡, 冯诗愚, 等. 单流和双流模式对燃油箱冲洗惰化过程影响[J]. 南京航空航天大学学报, 2018, 50(4): 435-441. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201804002.htm

    HUANG X F, LIU W Y, FENG S Y, et al. Influence of single-flow and dual-flow patterns on inerting process of fuel tank washing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(4): 435-441(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201804002.htm
    [14] 冯诗愚, 卢吉, 刘卫华, 等. 机载制氮系统中空纤维膜分离特性[J]. 航空动力学报, 2012, 27(6): 1332-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201206020.htm

    FENG S Y, LU J, LIU W H, et al. Separation performance of hollow fiber membrane for on-board inerting gas generating system[J]. Journal of Aerospace Power, 2012, 27(6): 1332-1339(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201206020.htm
    [15] 蔡琰, 林贵平, 曾宇, 等. 中空纤维膜机载制氮装置的数学建模分析[J]. 航空动力学报, 2015, 30(9): 2100-2107. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201509008.htm

    CAI Y, LIN G P, ZENG Y, et al. Mathematical modeling analysis of hollow fiber membrane onboard inert gas generation system[J]. Journal of Aerospace Power, 2015, 30(9): 2100-2107(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201509008.htm
    [16] 陈思禄. 用于气体分离的膜材料制备与中空纤维膜过程评价[D]. 天津: 天津大学, 2018.

    CHEN S L. Fabrication of membranes and process evaluation of hollow fiber membranes for gas separation[D]. Tianjin: Tianjin University, 2018(in Chinese).
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  146
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 录用日期:  2021-05-04
  • 网络出版日期:  2021-05-18
  • 整期出版日期:  2022-10-20

目录

    /

    返回文章
    返回
    常见问答