留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ESO的超局部无模型PMSM转速预测控制

许令亮 陈桂明 李乔扬

许令亮, 陈桂明, 李乔扬等 . 基于ESO的超局部无模型PMSM转速预测控制[J]. 北京航空航天大学学报, 2022, 48(11): 2204-2214. doi: 10.13700/j.bh.1001-5965.2021.0085
引用本文: 许令亮, 陈桂明, 李乔扬等 . 基于ESO的超局部无模型PMSM转速预测控制[J]. 北京航空航天大学学报, 2022, 48(11): 2204-2214. doi: 10.13700/j.bh.1001-5965.2021.0085
XU Lingliang, CHEN Guiming, LI Qiaoyanget al. Ultra-local model-free speed predictive control based on ESO for PMSM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2204-2214. doi: 10.13700/j.bh.1001-5965.2021.0085(in Chinese)
Citation: XU Lingliang, CHEN Guiming, LI Qiaoyanget al. Ultra-local model-free speed predictive control based on ESO for PMSM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2204-2214. doi: 10.13700/j.bh.1001-5965.2021.0085(in Chinese)

基于ESO的超局部无模型PMSM转速预测控制

doi: 10.13700/j.bh.1001-5965.2021.0085
基金项目: 

军内科研项目 20191C050239

详细信息
    通讯作者:

    陈桂明, E-mail: 792757066@qq.com

  • 中图分类号: TM341

Ultra-local model-free speed predictive control based on ESO for PMSM

Funds: 

Military Scientific Research Projects 20191C050239

More Information
  • 摘要:

    针对永磁同步电机(PMSM)由于参数变化和外界干扰导致控制性能下降的问题, 提出了一种基于扩展状态观测器(ESO)的超局部无模型转速预测控制(MFSPC)方法, 并解决了数字系统中的一拍延迟问题。该方法仅利用速度环的输入和输出, 不考虑电机参数, 避免了因电机参数变化导致的模型失配。针对传统MFSPC方法参数调整多、工作量大、输出脉动大、抖振明显、抗干扰性和鲁棒性差的问题, 建立了ESO, 实时监测系统的总扰动, 并进行前馈补偿。利用ESO产生的转速预测, 解决了数字控制系统中的一拍延时问题, 并基于频域分析, 整定控制参数, 提高控制性能。实验结果分析表明:所提方法有较强的抗干扰性和鲁棒性, 能够稳定跟踪额定转速, 有较快的动态响应。

     

  • 图 1  1 000 r/min和10 N·m条件下参数失配造成的误差影响

    Figure 1.  Effect of errors caused by mismatch parameters at1 000 r/min and 10 N·m

    图 2  基于MFSPC+ESO方法的PMSM驱动系统控制

    Figure 2.  PMSM drive system control based on MFSPC+ESO method

    图 3  基于ESO的MFSPC转速预测控制

    Figure 3.  Speed predictive control of MFSPC based on ESO

    图 4  PMSM实验平台配置

    Figure 4.  PMSM experimental platform configuration

    图 5  PMSM实验平台

    Figure 5.  PMSM experimental platform

    图 6  四种控制方法的反转性能对比

    Figure 6.  Comparison of reversal performance of four control methods

    图 7  四种控制方法的负载扰动性能对比

    Figure 7.  Comparison of load disturbance performance of four control methods

    图 8  额定负载下的转速响应对比

    Figure 8.  Comparison of speed response under rated load

    图 9  四种控制方法的参数变化性能对比

    Figure 9.  Comparison of parameter change of four control methods

    表  1  PMSM模型参数

    Table  1.   Parameters of PMSM model

    参数 数值
    极对数p 4
    定子电阻R0 1.84
    电感L0/mH 6.65
    磁链Ψf0/Wb 0.32
    摩擦系数B0/(N·m·s) 0.008
    转动惯量J0/(kg·m2) 0.002 7
    下载: 导出CSV

    表  2  速度反转特性

    Table  2.   Speed reversal characteristics

    方法 转速超调/% 波动方差 回归时间/s
    MFSPC+ESO 5.18 10.49 2.23
    MFSPC+TSMC 17.5 12.51 2.36
    MFSPC 36.05 13.01 2.29
    PI 20.36 15.15 2.41
    下载: 导出CSV

    表  3  速度响应特性

    Table  3.   Speed response characteristics

    方法 超调/% 失调/%
    给定转速100 r/min 给定转速800 r/min 给定转速1 500 r/min 给定转速100 r/min 给定转速800 r/min 给定转速1 500 r/min
    MFSPC+ESO 7.11 6.75 5.87 42.01 8.50 5.60
    MFSPC+TSMC 34.01 26.38 17.40 16.11 15.88 13.21
    MFSPC 41.15 45.07 24.04 9.09 5.19 12.83
    PI 29.39 32.54 21.62 62.70 31.24 16.17
    下载: 导出CSV

    表  4  四种控制方法实现复杂度比较

    Table  4.   Comparison of implementation complexity of four control methods

    方法 电机参数 控制参数
    PI R0, L0, B, Jψf0 Kp, Ki
    MFSPC KpαnF
    MFSPC+TSMC α, σ1σ2, μ1, μ2
    MFSPC+ESO αω0
    下载: 导出CSV
  • [1] 陆骏, 杨建国. 永磁同步电机滑模直接转速观测器[J]. 电机与控制学报, 2018, 22(1): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ201801013.htm

    LU J, YANG J G. Direct sliding mode speed observer of permanent magnetic synchronous motor[J]. Electric Machines and Control, 2018, 22(1): 86-92(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ201801013.htm
    [2] 黄宴委, 汤邵建, 黄文超, 等. 基于期望电压矢量的永磁同步电机快速速度预测控制[J]. 电机与控制学报, 2020, 24(4): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202004011.htm

    HUANG Y W, TANG S J, HUANG W C, et al. Fast speed predictive control of permanent magnet synchronous motor based on expected voltage vector[J]. Electric Machines and Control, 2020, 24(4): 87-95(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202004011.htm
    [3] 周湛清, 夏长亮, 陈炜, 等. 具有参数鲁棒性的永磁同步电机改进型预测转矩控制[J]. 电工技术学报, 2018, 33(5): 965-972. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201805001.htm

    ZHOU Z Q, XIA C L, CHEN W, et al. Modified predictive torque control for PMSM drives with parameter robustness[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 965-972(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201805001.htm
    [4] XU L L, CHEN G M, LI Q Y. Ultra-local model-free predictive current control based on nonlinear disturbance compensation for permanent magnet synchronous motor[J]. IEEE Access, 2020, 8: 127690-127699. doi: 10.1109/ACCESS.2020.3008158
    [5] 刘宁, 夏长亮, 周湛清, 等. 基于比例增益补偿的永磁同步电机转速平滑控制[J]. 电工技术学报, 2018, 33(17): 4007-4015. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201817009.htm

    LIU N, XIA C L, ZHOU Z Q, et al. Smooth speed control for permanent magnet synchronous motor using proportional gain compensation[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 4007-4015(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201817009.htm
    [6] JUNG J W, LEU V Q, DO T D, et al. Adaptive PID speed control design for permanent magnet synchronous motor drives[J]. IEEE Transactions on Power Electronics, 2014, 30(2): 900-908.
    [7] 马玉梅, 谢洋, 白环, 等. 基于DTC的PMSM中SMC与纯PI的协同控制器研究[J]. 电工技术, 2019, 496(10): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJY201910006.htm

    MA Y M, XIE Y, BAI H, et al. Research on cooperative controller with SMC and only PI in PMSM based on DTC[J]. Electric Engineering, 2019, 496(10): 19-21(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJY201910006.htm
    [8] 刘晓楠. 矩阵变换器-永磁同步电机系统直接转矩控制转矩波动抑制策略[J]. 中国电机工程学报, 2020, 40(1): 300-308. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202001028.htm

    LIU X N. Torque ripple reduction in matrix converter-fed permanent magnet synchronous motor driven by direct torque control[J]. Proceedings of the CSEE, 2020, 40(1): 300-308(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202001028.htm
    [9] VAFAIE M H, DEHKORDI B M, MOALLEM P, et al. A new predictive direct torque control method for improving both steady-state and transient-state operations of the PMSM[J]. IEEE Transactions on Power Electronics, 2016, 31(5): 3738-3753. https://ieeexplore.ieee.org/document/7169583
    [10] XIA C, ZHAO J, YAN Y, et al. A novel direct torque control of matrix converter-fed PMSM drives using duty cycle control for torque ripple reduction[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 2700-2713. https://ieeexplore.ieee.org/document/6572870/
    [11] 张虎, 张永昌, 刘家利, 等. 基于单次电流采样的永磁同步电机无模型预测电流控制[J]. 电工技术学报, 2017, 32(2): 180-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201702021.htm

    ZHANG H, ZHANG Y C, LIU J L, et al. Model-free predictive current control of permanent magnet synchronous motor based on single current sampling[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 180-187(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201702021.htm
    [12] 刘旭东, 李珂, 张奇, 等. 基于非线性扰动观测器的永磁同步电机单环预测控制[J]. 中国电机工程学报, 2018, 38(7): 2153-2162. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201807026.htm

    LIU X D, LI K, ZHANG Q, et al. Single-loop predictive control of PMSM based on nonlinear disturbance observers[J]. Proceedings of the CSEE, 2018, 38(7): 2153-2162(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201807026.htm
    [13] 刘珅, 高琳. 永磁同步电机的改进模型预测直接转矩控制[J]. 电机与控制学报, 2020, 24(1): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202001002.htm

    LIU K, GAO L. Improved model of predictive direct torque control for permanent magnet synchronous motor[J]. Electric Machines and Control, 2020, 24(1): 10-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202001002.htm
    [14] 贾成禹, 王旭东, 周凯. 基于线性变参数模型预测控制的内置式永磁同步电机转速控制器设计[J]. 电工技术学报, 2020, 35(22): 50-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202022006.htm

    JIA C Y, WANG X D, ZHOU K. Design of built-in permanent magnet synchronous motor speed controller based on linear variable parameter model predictive control[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 50-61(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202022006.htm
    [15] FLIESS M, JOIN C. Model-free control[J]. International Journal of Control, 2013, 86(12): 2228-2252.
    [16] ZHOU Y, LI H, ZHANG H. Model-free deadbeat predictive current control of a surface-mounted permanent magnet synchronous motor drive system[J]. Journal of Power Electronics, 2018, 18(1): 103-115.
    [17] ZHOU Y, LI H, YAO H. Model-free control of surface mounted PMSM drive system[C]//IEEE International Conference on Industrial Technology. Piscataway: IEEE Press, 2016: 175-180.
    [18] ZHANG X, HOU B, MEI Y. Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer[J]. IEEE Transactions on Power Electro-nics, 2017, 32(5): 3818-3834. https://ieeexplore.ieee.org/document/7515145
    [19] ZHANG Y, JIN J, HUANG L. Model-free predictive current control of PMSM drives based on extended state observer using ultra-local model[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 993-1003.
    [20] 杨淑英, 王玉柱, 储昭晗, 等. 基于增益连续扩张状态观测器的永磁同步电机电流解耦控制[J]. 中国电机工程学报, 2020, 40(6): 1985-1997. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202006025.htm

    YANG S Y, WANG Y Z, CHU Z H, et al. Current decoupling control of PMSM based on an extended state observer with continuous gains[J]. Proceedings of the CSEE, 2020, 40(6): 1985-1997(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202006025.htm
    [21] XU L L, CHEN G M, LI G Y, et al. Model predictive control based on parametric disturbance compensation[J]. Mathematical Problems in Engineering, 2020, 2020: 9543928.
    [22] 毛海杰, 李炜, 蒋栋年, 等. 基于线性扩张状态观测器的永磁同步电机状态估计与性能分析[J]. 电工技术学报, 2019, 34(10): 2155-2165. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201910017.htm

    MAO H J, LI W, JIANG D N, et al. State estimation and performance analysis based on linear extended state observer for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2155-2165(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201910017.htm
    [23] WANG F X, HE L. FPGA based predictive speed control for PMSM system using integral sliding mode disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 972-981.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  605
  • HTML全文浏览量:  150
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-22
  • 录用日期:  2021-07-03
  • 网络出版日期:  2021-07-13
  • 整期出版日期:  2022-11-20

目录

    /

    返回文章
    返回
    常见问答