留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速飞行器命中精度高准确度评估

彭维仕

彭维仕. 高超声速飞行器命中精度高准确度评估[J]. 北京航空航天大学学报, 2022, 48(11): 2130-2137. doi: 10.13700/j.bh.1001-5965.2021.0094
引用本文: 彭维仕. 高超声速飞行器命中精度高准确度评估[J]. 北京航空航天大学学报, 2022, 48(11): 2130-2137. doi: 10.13700/j.bh.1001-5965.2021.0094
PENG Weishi. Evaluation of high hitting accuracy performance of hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2130-2137. doi: 10.13700/j.bh.1001-5965.2021.0094(in Chinese)
Citation: PENG Weishi. Evaluation of high hitting accuracy performance of hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2130-2137. doi: 10.13700/j.bh.1001-5965.2021.0094(in Chinese)

高超声速飞行器命中精度高准确度评估

doi: 10.13700/j.bh.1001-5965.2021.0094
基金项目: 

国家自然科学基金 71801222

陕西省自然科学基金 2018JQ6019

博士后创新人才支持计划 BX201700104

详细信息
    通讯作者:

    彭维仕, E-mail: peng_weishi@163.com

  • 中图分类号: E924.3

Evaluation of high hitting accuracy performance of hypersonic vehicle

Funds: 

National Natural Science Foundation of China 71801222

National Science Foundation of Shaanxi Province of China 2018JQ6019

National Postdoctoral Program for Innovative Talents BX201700104

More Information
  • 摘要:

    为科学合理地评估高超声速飞行器的命中精度, 提出了一种基于误差谱的高超声速飞行器命中精度高准确度评估方法。对获得的高超声速飞行器命中精度数据进行预处理, 得到该数据的落点偏差。构建算术平均误差、均方根误差、调和平均误差、误差中位数、误差众数、几何平均误差和迭代中距误差评估指标来反映高超声速飞行器命中精度的性能。分别建立高超声速飞行器命中精度评估模型及其可信度模型。通过实例验证所提评估方法的正确性和合理性。仿真结果表明:所提方法不仅能给出高超声速飞行器命中精度的评估结果, 还能给出该结果的可信度。研究工作为高超声速飞行器命中精度的高准确度评估提供了新的科学评估方法。

     

  • 图 1  落点偏差示意图

    Figure 1.  Diagram of relative distance error

    图 2  两种可信度评估方法示意图

    Figure 2.  Schematic of two credibility assessment methods

    图 3  三种试验原始数据

    Figure 3.  Original data of three types of test data

    图 4  三种试验误差数据

    Figure 4.  Error data of three types of test data

    图 5  三种试验数据误差谱曲线

    Figure 5.  Error spectrum curves of three types of test data

    图 6  试验数据1和试验数据3的误差谱曲线

    Figure 6.  Error spectrum curves of Test data1 and Test data3

    图 7  试验数据1和试验数据2的误差谱曲线

    Figure 7.  Error spectrum curves of Test data1 and Test data2

    图 8  三种试验数据的误差谱曲线

    Figure 8.  Error spectrum curves of three types of test data

    表  1  三次试验服从的二维正态分布参数

    Table  1.   Two-dimensional normal distribution which parameters of three tests follow

    试验数据 次数 扩容样本 均值 方差
    Test data1 50 1 000 [4, 3]
    Test data2 30 1 000 [2.5, 5]
    Test data3 45 1 000 [3, 3]
    下载: 导出CSV
  • [1] WANG W J. Hypersonic vehicle aerodynamic design using modified sequential approximate optimization[J]. Advances in Space Research, 2019, 63(11): 3706-3720. doi: 10.1016/j.asr.2019.02.010
    [2] LAUGHREY J A. Performance evaluation of an air vehicle utilizing nonaxisymrnetric nozzles[J]. Journal of Aircraft, 1981, 18(2): 89-95. doi: 10.2514/3.57470
    [3] GONG C L, GOU J J, HU J X, et al. A novel TE-material based thermal protection structure and its performance evaluation for hypersonic flight vehicles[J]. Aerospace Science and Technology, 2018, 77: 458-470. doi: 10.1016/j.ast.2018.03.028
    [4] JAIMIE T, RAMANA G, WILBUR H, et al. Performance analysis method for evaluating design features of tactical hypersonic intercepts[C]//AIAA of Navigation and Control Conference in New Orleans. Reston: AIAA, 1991: 1557-1565.
    [5] 邢永刚, 周小勇, 李懿, 等. 高超声速飞行器MDO设计综合评估研究[J]. 陕西理工大学学报(自然科学版), 2019, 35(5): 72-79. doi: 10.3969/j.issn.1673-2944.2019.05.013

    XING Y G, ZHOU X Y, LI Y, et al. Research on the comprehensive assessment of multidisciplinary design optimization for hypersonic vehicle[J]. Journal of Shaanxi University of Technology (Natural Science Edition), 2019, 35(5): 72-79(in Chinese). doi: 10.3969/j.issn.1673-2944.2019.05.013
    [6] 胡怀中, 郭茹霜, 宫厚娟, 等. 高超声速飞行器的弹道优化评估方法[J]. 国防科技大学学报, 2015, 37(2): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201502022.htm

    HU H Z, GUO R S, GONG H J, et al. Evaluation method for hypersonic vehicle trajectory optimization[J]. Journal of National University of Defense Technology, 2015, 37(2): 117-120(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201502022.htm
    [7] 朱鸿绪, 刘燕斌, 曹瑞, 等. 高超声速飞行器底层性能评价指标的可行性分析[J]. 航空学报, 2020, 41(3): 323259. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202003015.htm

    ZHU H X, LIU Y B, CAO R, et al. Feasibility analysis for underlying indictors in control performance evaluation of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 323259(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202003015.htm
    [8] 张登辉, 马萍, 晁涛, 等. 高超声速飞行器制导控制系统性能评估[J]. 系统工程与电子技术, 2018, 40(8): 148-153. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201808020.htm

    ZHANG D H, MA P, CHAO T, et al. Performance evaluation of guidance and control system for hypersonic vehicle[J]. Systems Engineering and Electrinics, 2018, 40(8): 148-153(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201808020.htm
    [9] 王楚燕, 战晓苏. 基于区间数排序的高超声速飞行器目标威胁评估方法[J]. 军事运筹与系统工程, 2017, 31(1): 17-21. doi: 10.3969/j.issn.1672-8211.2017.01.003

    WANG C Y, ZHAN X S. Hypersonic vehicle target threat assessment method based on interval number ranking[J]. Military Operations Research and Systems Engineering, 2017, 31(1): 17-21(in Chinese). doi: 10.3969/j.issn.1672-8211.2017.01.003
    [10] 王浩亮, 李清东, 任章, 等. 基于模型迁移方法的高超声速飞行器建模[J]. 北京航空航天大学学报, 2016, 42(12): 2540-2647. doi: 10.13700/j.bh.1001-5965.2015.0807

    WANG H L, LI Q D, REN Z, et al. Modeling of hypersonic vehicle via model migration method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2540-2647(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0807
    [11] 杨琪琛, 宗群, 董琦. 高超声速飞行器再入控制与性能评估方法[J]. 信息与控制, 2017, 46(1): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYK201701007.htm

    YANG Q C, ZONG Q, DONG Q. Reentry control and performance evaluation method for hypersonic vehicle[J]. Information and Control, 2017, 46(1): 33-40(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXYK201701007.htm
    [12] 卢青. 高超声速飞行器制导控制与评估方法研究[D]. 西安: 西北工业大学, 2018: 75-77.

    LU Q. Research of guidance control and evaluation for hypersonic vehicle[D]. Xi'an: Northwestern Polytechnical University, 2018: 75-77(in Chinese).
    [13] 彭维仕. 误差谱理论及其在导弹系统性能评估中的应用研究[D]. 西安: 空军工程大学, 2016: 59-61.

    PENG W S. Study on error spectrum theory and its application in missile system performance evaluation[D]. Xi'an: Air Force Engineering University, 2016: 59-61(in Chinese).
    [14] PENG W S, FANG Y W, ZHAN R J, et al. Weapon systems accuracy evaluation using the error spectrum[J]. Aerospace Science and Technology, 2016, 58: 369-379.
    [15] PENG W S. Model selection for Gaussian mixture model based on desirability level criterion[J]. Optik, 2017, 130: 797-805.
    [16] YIN H L, LI X R, LAN J. Iterative mid-range with application to estimation performance evaluation[J]. IEEE Signal Process Letters, 2015, 22(11): 2044-2048.
    [17] LI X R, ZHAO Z L, DUAN Z S. Error spectrum and desirability level for estimation performance evaluation[C]//Proceedings of Workshop on Estimation, Tracking and Fusion, 2007: 1-7.
    [18] PENG W S, FANG Y W, DUAN Z S, et al. Enhanced error spectrum for estimation performance evaluation[J]. Optik, 2016, 127: 5084-5091.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  101
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 录用日期:  2021-06-04
  • 网络出版日期:  2021-07-12
  • 整期出版日期:  2022-11-20

目录

    /

    返回文章
    返回
    常见问答