留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转抛物-锥形蚀坑模型及其应用

刘德俊 田干 金国锋 杨正伟 任碧云 魏花丽

刘德俊, 田干, 金国锋, 等 . 旋转抛物-锥形蚀坑模型及其应用[J]. 北京航空航天大学学报, 2022, 48(11): 2230-2240. doi: 10.13700/j.bh.1001-5965.2021.0106
引用本文: 刘德俊, 田干, 金国锋, 等 . 旋转抛物-锥形蚀坑模型及其应用[J]. 北京航空航天大学学报, 2022, 48(11): 2230-2240. doi: 10.13700/j.bh.1001-5965.2021.0106
LIU Dejun, TIAN Gan, JIN Guofeng, et al. Rotating parabolic-conical corrosion pit model establishment and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2230-2240. doi: 10.13700/j.bh.1001-5965.2021.0106(in Chinese)
Citation: LIU Dejun, TIAN Gan, JIN Guofeng, et al. Rotating parabolic-conical corrosion pit model establishment and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2230-2240. doi: 10.13700/j.bh.1001-5965.2021.0106(in Chinese)

旋转抛物-锥形蚀坑模型及其应用

doi: 10.13700/j.bh.1001-5965.2021.0106
基金项目: 

国家自然科学基金 52075541

国家自然科学基金 52272446

陕西省自然科学基金 2020JM-354

详细信息
    通讯作者:

    田干, E-mail: tiangan_2012@163.com

  • 中图分类号: V252

Rotating parabolic-conical corrosion pit model establishment and its application

Funds: 

National Natural Science Foundation of China 52075541

National Natural Science Foundation of China 52272446

Natural Science Foundation of Shaanxi Province 2020JM-354

More Information
  • 摘要:

    点蚀是腐蚀介质环境中金属性能劣化的主要形式之一。蚀坑导致的应力集中会使结构整体强度退化, 降低结构的安全性和可靠性。因此, 准确的蚀坑模型对结构应力场的分析具有重要影响。为此, 在典型的蚀坑形貌基础上, 结合蚀坑张开角的定义, 提出旋转抛物-锥形蚀坑模型, 并通过有限元仿真与拉伸破坏试验验证了模型的有效性。结果表明:蚀坑导致的应力集中极大值处于接近坑底或坑口区域, 旋转抛物-锥形蚀坑模型在蚀坑坑底、坑肩及坑口处的应力集中分布带比半椭球形蚀坑模型更准确, 应力敏感性更强。

     

  • 图 1  典型蚀坑图

    Figure 1.  Typical corrosion pit patterns

    图 2  尖深蚀坑示意图

    Figure 2.  Sharp-deep corrosion pit

    图 3  浅平蚀坑示意图

    Figure 3.  Shallow-flat corrosion pit

    图 4  λ=0.8的蚀坑形貌比较

    Figure 4.  Comparison of corrosion pit morphology under λ=0.8

    图 5  λ=1.0的蚀坑形貌比较

    Figure 5.  Comparison of corrosion pit morphology under λ=1.0

    图 6  λ=1.2的蚀坑形貌比较

    Figure 6.  Comparison of corrosion pit morphology under λ=1.2

    图 7  模型加载条件与蚀坑网格模型

    Figure 7.  Boundary condition and mesh model

    图 8  带孔平板示意图

    Figure 8.  Schematic diagram of plate with hole

    图 9  λ=0.8下的蚀坑局部应力分布

    Figure 9.  Local stress contribution of corrosion pits under λ=0.8

    图 10  λ=1.0下的蚀坑局部应力分布

    Figure 10.  Local stress contribution of corrosion pits under λ=1.0

    图 11  λ=1.2下的蚀坑局部应力分布

    Figure 11.  Local stress contribution of corrosion pits under λ=1.2

    图 12  应力沿不同λ值的蚀坑截面曲线分布

    Figure 12.  Stress along corrosion pit sections under various λ value

    图 13  拉伸试样及蚀坑形貌SEM图

    Figure 13.  Tensile samples and corrosion pit morphology of SEM

    图 14  蚀坑断面图与应力云图

    Figure 14.  Cross section and stress contour of corrosion pits

    表  1  理论与数值Mises应力比较

    Table  1.   Comparison of theoretical and numerical Mises stress

    R(垂直拉伸方向上的节点距孔中心距离/mm) 理论Mises应力/MPa 数值Mises应力/MPa 误差/%
    0.4 300 301.97 0.66
    0.464 220.02 232.21 5.54
    0.5 193.44 200.11 3.45
    下载: 导出CSV

    表  2  旋转抛物-锥形蚀坑与半椭球形蚀坑应力集中系数

    Table  2.   Stress concentration factors between rotating parabolic-conial corrosion pit and semi-ellipsoid corrosion pits

    γ K
    λ=0.8 λ=1.0 λ=1.2
    0.4 2.142
    0.6 2.028
    0.8 2.128 1.904
    1.0 2.152 1.959
    1.2 1.934 1.825
    1.4 1.818
    半椭形蚀坑 2.022 1.866 1.876
    下载: 导出CSV
  • [1] 刘治国, 李旭东, 陈川. 单个边缘微观损伤对铝合金材料蚀坑应力集中效应的影响研究[J]. 机械科学与技术, 2021, 40(3): 456-462. doi: 10.13433/j.cnki.1003-8728.20200075

    LIU Z G, LI X D, CHEN C. Influence of single marginal microcosmic damage on concentration effect of corrosion pit stress for aluminum alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 456-462(in Chinese). doi: 10.13433/j.cnki.1003-8728.20200075
    [2] LIU D Z, LI Y, XIE X D, et al. Effect of pre-corrosion pits on residual fatigue life for 42CrMo steel[J]. Materials (Basel, Switzerland), 2019, 12(13): 2130-2137. doi: 10.3390/ma12132130
    [3] ISHIHARA S, SAKA S, NAN Z Y, et al. Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law[J]. Fracture of Engineering Materials and Structures, 2006, 29(6): 472-480. doi: 10.1111/j.1460-2695.2006.01018.x
    [4] FARHAD F, ZHANG X, SMYTH-BOYLE D. Fatigue behaviour of corrosion pits in X65 steel pipelines[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(5): 1771-1782. doi: 10.1177/0954406218776338
    [5] XIANG L H, PAN J Y, CHEN S Y. Analysis on the stress corrosion crack inception based on pit shape and size of the FV520B tensile specimen[J]. Results in Physics, 2018, 9: 463-470. doi: 10.1016/j.rinp.2018.03.005
    [6] HASHIM M, FARHAD F, SMYTH-BOYLE D, et al. Behavior of 316L stainless steel containing corrosion pits under cyclic loading[J]. Materials and Corrosion, 2019, 70(11): 2009-2019. doi: 10.1002/maco.201810744
    [7] LI X W, LIANG J S, SHI T, et al. Tribological behaviors of vacuum hot-pressed ceramic composites with enhanced cyclic oxidation and corrosion resistance[J]. Ceramics International, 2020, 46(9): 12911-12920. doi: 10.1016/j.ceramint.2020.02.057
    [8] EUBANKS R A. Stress concentration due to a hemispherical pit at a free surface[J]. Journal of Applied Mechanics, 1954, 21(3): 57-62.
    [9] FUJITA T, SADAVASU T. Stress concentration due to hemispherical pit at a free surface of a thick plate under all around tension[J]. Bulletin of the Japan Society of Mechanical Engineers, 1978, 21(154): 561-565. doi: 10.1299/jsme1958.21.561
    [10] CERIT M. Corrosion pit-induced stress concentration in spherical pressure vessel[J]. Thin-Walled Structures, 2019, 136: 106-112. doi: 10.1016/j.tws.2018.12.014
    [11] CERIT M. Numerical investigation on torsional stress concentration factor at the semi elliptical corrosion pit[J]. Corrosion Science, 2013, 67: 225-232. doi: 10.1016/j.corsci.2012.10.028
    [12] CERIT M, GENEL K, EKSI S. Numerical investigation on stress concentration of corrosion pit[J]. Engineering Failure Analysis, 2009, 16(7): 2467-2472. doi: 10.1016/j.engfailanal.2009.04.004
    [13] HOU J, SONG L. Numerical investigation on stress concentration of tension steel bars with one or two corrosion pits[J]. Advances in Materials Science and Engineering, 2015, 2015: 413737.
    [14] LI J Q. Modelling on the evolution of corrosion pit during stress corrosion[J]. Advances in Petroleum Exploration and Development, 2016, 11(2): 64-69.
    [15] LIU L, HOU N, DING N, et al. Interacting effects of internal defects and corrosion pits on the stress concentration of hourglass shaped specimens[J]. Journal of Failure Analysis and Prevention, 2019, 19(4): 967-975. doi: 10.1007/s11668-019-00682-2
    [16] LI C Q, YANG S T. Stress intensity factors for high aspect ratio semi-elliptical internal surface cracks in pipes[J]. International Journal of Pressure Vessels and Piping, 2012, 96-97(1): 13-23.
    [17] ATLURI S N, KATHIRESAN K. Influence of flaw shapes on stress intensity factors for pressure vessel surface flaws and nozzle corner cracks[J]. Journal of Pressure Vessel Technology, 1980, 102(3): 278-286. doi: 10.1115/1.3263332
    [18] ACUÑA N, GONZÁLEZ-SÁNCHEZ J, KÚ-BASULTO G, et al. Analysis of the stress intensity factor around corrosion pits developed on structures subjected to mixed loading[J]. Scripta Materialia, 2006, 55(4): 363-366. doi: 10.1016/j.scriptamat.2006.04.024
    [19] TURNBULL A, WRIGHT L, CROCKER L. New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit[J]. Corrosion Science, 2010, 52(4): 1492-1498. doi: 10.1016/j.corsci.2009.12.004
    [20] 张川, 姚卫星. 危险蚀坑评判及疲劳寿命计算[J]. 机械强度, 2013, 35(2): 207-213. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201302019.htm

    ZHANG C, YAO W X. Judgment of critical pits and calculation of fatigue life[J]. Journal of Mechanical Strength, 2013, 35(2): 207-213(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201302019.htm
    [21] WANG W G, ZHOU A N, FU G Y, et al. Evaluation of stress intensity factor for cast iron pipes with sharp corrosion pits[J]. Engineering Failure Analysis, 2017, 81: 254-269. doi: 10.1016/j.engfailanal.2017.06.026
    [22] 国家市场监督管理总局, 国家标准化管理委员会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T228.1—2021[S]. 北京: 中国标准出版社, 2011: 11-14.

    State Administration for Market Regulation, Standardization Administtration of the People's Republi of China. Metallic materials-Tensile testing-Part 1: Method of test at room temperature: GB/T 228.1—2021[S]. Beijing: Standards Press of China, 2011: 11-14(in Chinese).
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  73
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 录用日期:  2021-06-04
  • 网络出版日期:  2021-06-24
  • 整期出版日期:  2022-11-20

目录

    /

    返回文章
    返回
    常见问答