留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于优化CenterNet的低空无人机检测方法

张瑞鑫 黎宁 张夏夏 ZHOUHuiyu

张瑞鑫, 黎宁, 张夏夏, 等 . 基于优化CenterNet的低空无人机检测方法[J]. 北京航空航天大学学报, 2022, 48(11): 2335-2344. doi: 10.13700/j.bh.1001-5965.2021.0108
引用本文: 张瑞鑫, 黎宁, 张夏夏, 等 . 基于优化CenterNet的低空无人机检测方法[J]. 北京航空航天大学学报, 2022, 48(11): 2335-2344. doi: 10.13700/j.bh.1001-5965.2021.0108
ZHANG Ruixin, LI Ning, ZHANG Xiaxia, et al. Low-altitude UAV detection method based on optimized CenterNet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2335-2344. doi: 10.13700/j.bh.1001-5965.2021.0108(in Chinese)
Citation: ZHANG Ruixin, LI Ning, ZHANG Xiaxia, et al. Low-altitude UAV detection method based on optimized CenterNet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2335-2344. doi: 10.13700/j.bh.1001-5965.2021.0108(in Chinese)

基于优化CenterNet的低空无人机检测方法

doi: 10.13700/j.bh.1001-5965.2021.0108
基金项目: 

航空科学基金 ASFC-20175152036

人工智能重点项目 1004-56XZA19008

详细信息
    通讯作者:

    黎宁, E-mail: lnee@nuaa.edu.cn

  • 中图分类号: TP391

Low-altitude UAV detection method based on optimized CenterNet

Funds: 

Aeronautical Science Foundation of China ASFC-20175152036

Key Project on Artificial Intelligence 1004-56XZA19008

More Information
  • 摘要:

    为实现对“低慢小”无人机(UAV)的有效探测, 提升检测精度和定位质量, 提出一种基于联合注意力和CenterNet的低空无人机检测方法。针对通用目标检测算法小目标漏检率高的问题, 引入解耦的非局部算子, 捕捉光学图像目标区域的关联性。利用无人机群个体间的相似性, 将离散的无人机特征相互关联, 降低漏检率。为获得更加精准的检测框, 对CenterNet的标签编码策略和边界框回归方式进行优化, 引入定位质量损失, 提升检测框定位质量。实验结果表明:优化后的S-CenterNet算法相比原始CenterNet算法平均准确率提升了8.9%, 检测框定位质量有明显改善。

     

  • 图 1  CenterNet结构简图

    Figure 1.  CenterNet structural sketch

    图 2  Non-local结构

    Figure 2.  Non-local structure

    图 3  PNL结构

    Figure 3.  PNL structure

    图 4  CNL结构

    Figure 4.  CNL structure

    图 5  CenterNet与S-CenterNet-DLAX28结构

    Figure 5.  CenterNet and S-CenterNet-DLAX28 structure

    图 6  高斯散射核示意图

    Figure 6.  Schematic diagram of Gaussian scattering kernel

    图 7  MIOU计算方法

    Figure 7.  MIOU calculation method

    图 8  数据集部分图像

    Figure 8.  Part of dataset image

    图 9  改进前后算法性能对比

    Figure 9.  Algorithm performance comparison before and after improvement

    图 10  可视化结果

    Figure 10.  Visualized results

    表  1  网络结构调整

    Table  1.   Network structure adjustment

    网络 mAP/% AP50/% AP75/% 推理时间/ms
    DLA34 41.9 89.8 31.8 11
    DLA28 42.1 90.0 32.1 10
    下载: 导出CSV

    表  2  PNL性能对比

    Table  2.   PNL performance comparison

    PNL mAP/% AP50/% AP75/% 推理时间/ms
    × 42.1 90.0 32.1 10
    44.8 93.2 34.7 14
    注: “√”表示采用相关改进策略,“×”表示不采用相关改进策略
    下载: 导出CSV

    表  3  CNL性能对比

    Table  3.   CNL performance comparison

    阶段 mAP/% AP50/% AP75/% 推理时间/ms
    L2 42.3 90.5 32.0 11
    L3 42.6 91.1 32.2 11
    L4 42.5 90.8 32.3 11
    L2+L3+L4 43.3 92.0 33.1 13
    下载: 导出CSV

    表  4  标签编码方式

    Table  4.   Label encoding method

    高斯核 mAP/% AP50/% AP75/% 推理时间/ms
    圆形 42.1 90.0 32.1 10
    椭圆 42.5 90.1 32.8 10
    下载: 导出CSV

    表  5  定位质量损失和比例因子

    Table  5.   Positioning quality loss and scale factor

    损失函数 mAP/% AP50/% AP75/% 推理时间/ms
    Focal Loss 42.1 90.0 32.1 10
    FL+MIOU 46.1 92.5 40.2 10
    FL+λ 42.8 90.7 33.4 10
    FL+MIOU+λ 46.6 92.7 41.1 10
    下载: 导出CSV

    表  6  消融实验结果

    Table  6.   Results of ablation experiments

    网络结构 椭圆高斯核 损失函数 mAP(0.5∶0.95)/% AP50/% AP75/% mAR(0.9∶0.95)/% 推理时间/ms 参数量/MB
    × × × 41.9 89.8 31.8 51.8 11 74.0
    × × 45.6 92.2 38.2 55.3 17 30.0
    × × 42.5 90.1 32.8 52.4 11 74.0
    × × 46.6 92.7 41.1 54.9 11 74.0
    × 46.3 93.7 39.0 55.7 17 30.0
    × 47.3 93.4 43.7 57.1 11 74.0
    × 50.2 94.9 47.2 59.1 17 30.0
    50.5 95.5 47.8 59.5 17 30.0
    注: “√”表示采用相关改进策略,“×”表示不采用相关改进策略。
    下载: 导出CSV

    表  7  算法准确率对比

    Table  7.   Algorithm accuracy comparison

        算法框架 主干网络 mAP/% AP50/% AP75/%
    CenterNet ResNet-18 29.5 77.8 13.3
    ResNet-101 34.9 85.7 18.2
    DLA34 41.9 89.8 31.8
    DLA34-DCN 43.7 90.2 34.2
    Hourglass 47.2 93.5 42.3
    S-CenterNet DLAS28 48.3 94.1 44.0
    DLAX28 50.5 95.5 47.8
    DLAX28-DCN 51.6 95.3 50.1
    下载: 导出CSV

    表  8  算法速度及模型复杂度对比

    Table  8.   Algorithm speed and model complexity comparison

        算法框架 主干网络 推理时间/ms 参数量/MB
    CenterNet ResNet-18 8 63.3
    ResNet-101 19 214.3
    DLA34 11 74.0
    DLA34-DCN 16 78.8
    Hourglass 49 765.7
    S-CenterNet DLAS28 12 8.3
    DLAX28 17 30.0
    DLAX28-DCN 21 32.1
    下载: 导出CSV
  • [1] 于飞, 刘东华, 贺飞扬. 无人机"黑飞"对电磁空间安全的挑战[J]. 中国无线电, 2018(8): 43-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWDG201808032.htm

    YU F, LIU D H, HE F Y. UAV "black flying" challenges the safety of electromagnetic space[J]. China Radio, 2018(8): 43-44(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZWDG201808032.htm
    [2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587.
    [3] GIRSHICK R. Fast-RCNN[C]//Proceedings of the IEEE Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1440-1448.
    [4] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017(6): 1137-1149.
    [5] CAI Z, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 6154-6162.
    [6] HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Compu-ter Vision. Piscataway: IEEE Press, 2017: 2980-2988.
    [7] REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-08)[2021-01-12]. https://arxiv.org/abs/1804.02767.
    [8] LIN T, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2999-3007.
    [9] LAW H, DENG J. CornerNet: Detecting objects as paired keypoints[J]. International Journal of Computer Vision, 2018, 128: 642-656.
    [10] ZHOU X, WANG D, KRÄHENBVHL P. Objects as points[EB/OL]. (2019-04-16)[2021-01-12]. https://arxiv.org/abs/1603.06937.
    [11] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7794-7803.
    [12] CAO Y, XU J, LIN S, et al. Global context networks[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020(2020-12-24)[2021-01-12]. https://doi.org/10.1109/TPAMI.2020-3047209.
    [13] YIN M, YAO Z, CAO Y, et al. Disentangled non-local neural networks[EB/OL]. (2020-11-08)[2021-01-12]. https://arxiv.org/abs/2006.06668.
    [14] WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 11531-11539.
    [15] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [16] YU F, WANG D, SHELHAMER E, et al. Deep layer aggregation[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 2403-2412.
    [17] NEWWLL A, YANG K, JIA D. Stacked hourglass networks for human pose estimation[EB/OL ]. (2016-03-22)[2020-12-28]. https://arxiv.org/abs/1603.06937.
    [18] WANG C, LIAO H Y, WU Y, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]//Proceedings of 2020 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 1571-1580.
    [19] ZHU X Z, HU H, LIN S, et al. Deformable ConvNets v2: More deformable, better results[C]//Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 9308-9316.
  • 加载中
图(10) / 表(8)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  101
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 录用日期:  2021-05-05
  • 网络出版日期:  2021-06-02
  • 整期出版日期:  2022-11-20

目录

    /

    返回文章
    返回
    常见问答