留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米酚醛气凝胶材料高温热物性参数辨识方法

张红军 李海群 康宏琳 罗金玲

张红军,李海群,康宏琳,等. 纳米酚醛气凝胶材料高温热物性参数辨识方法[J]. 北京航空航天大学学报,2023,49(1):92-99 doi: 10.13700/j.bh.1001-5965.2021.0170
引用本文: 张红军,李海群,康宏琳,等. 纳米酚醛气凝胶材料高温热物性参数辨识方法[J]. 北京航空航天大学学报,2023,49(1):92-99 doi: 10.13700/j.bh.1001-5965.2021.0170
ZHANG H J,LI H Q,KANG H L,et al. High temperature thermal conductivity estimation method of inorganic-organic hybrid phenolic composites[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):92-99 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0170
Citation: ZHANG H J,LI H Q,KANG H L,et al. High temperature thermal conductivity estimation method of inorganic-organic hybrid phenolic composites[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):92-99 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0170

纳米酚醛气凝胶材料高温热物性参数辨识方法

doi: 10.13700/j.bh.1001-5965.2021.0170
基金项目: 国家自然科学基金(11802296); 装备预研领域基金(61402060301)
详细信息
    通讯作者:

    E-mail:zhjbuaa@126.com

  • 中图分类号: V19

High temperature thermal conductivity estimation method of inorganic-organic hybrid phenolic composites

Funds: National Natural Science Foundation of China (11802296); Equipment Pre Research Fund (61402060301)
More Information
  • 摘要:

    临近空间高超声速飞行器大面积区域可能广泛采用纳米酚醛气凝胶(IPC)材料,获取高超声速气动加热作用下IPC材料的高温热物性参数,对于高超声速飞行器热防护系统的精细化设计具有重要的意义。考虑烧蚀效应的材料高温热物性参数辨识方法研究,基于Ablation Workshop烧蚀热响应标准算例对高温热物性参数辨识方法进行验证,计算结果表明:热物性参数辨识分析方法计算精度较高;通过带分层温度/烧蚀传感器的IPC材料电弧风洞试验,得到典型来流状态下不同厚度IPC材料内部的温度分布及热解厚度分布数据,通过辨识获得高温烧蚀条件下IPC材料热导率随温度的变化关系,IPC材料原始层热导率在温度低于800 K时随温度缓慢上升(热导率维持在0.1 W/(m·K)以下),之后材料热解使得热导率发生突变,碳化层热导率在温度高于800 K时随着温度的上升急剧增大,到1300 K左右时上升到0.17 W/(m·K)。

     

  • 图 1  热解层烧蚀模型

    Figure 1.  Ablation model of pyrolysis layer

    图 2  变几何域的控制体

    Figure 2.  Control volume of variable geometric domain

    图 3  基于烧蚀传热逆问题的高温热物性参数辨识流程

    Figure 3.  Flowchart of thermophysical parameter identification based on inverse problem of ablation heat transfer

    图 4  基于辨识初值热导率的温度场计算结果对比

    Figure 4.  Comparison of temperature field between ablation model of pyrolysis layer and test based on initial value of thermal conductivity

    图 5  测点误差函数收敛曲线

    Figure 5.  Convergence curve of error function of measuring point

    图 6  基于辨识热导率的温度场计算结果对比

    Figure 6.  Comparison of temperature field between ablation model of pyrolysis layer and test based on identification value of thermal conductivity

    图 7  分层温度/烧蚀传感器平板试验件结构示意图

    Figure 7.  Structure diagram of flat plate test piece with stratified temperature and ablation sensors

    图 8  IPC材料原始层和碳化层热导率随温度的变化曲线

    Figure 8.  Temperature dependence of thermal conductivity of original layer and carbonized layer of IPC

    图 9  材料内部测点温度和试验结果的对比

    Figure 9.  Comparison of measuring point temperature between calculation and test

    图 10  IPC材料内部辨识温度和试验结果的对比

    Figure 10.  Comparison of internal identificationtemperature between calculation and test

    图 11  IPC材料内部温度对比

    Figure 11.  Comparison of internal temperature of IPC between calculation and test

    图 12  IPC材料热解厚度对比

    Figure 12.  Comparison of pyrolysis thickness of IPC between calculation and test

    图 13  铝合金背温对比

    Figure 13.  Comparison of back temperature of aluminum alloy between calculation and test

    表  1  热解反应参数

    Table  1.   Pyrolysis reaction parameters

    反应$ {\rho _{{\rm{v}}i}} $/(kg·m−3)$ {\rho _{{\rm{c}}i}} $/(kg·m−3)Ai/s−1(Ei·R−1)/KniT/K
    A30001.20×10485563333.33
    B9006004.48×109204403555.6
    下载: 导出CSV

    表  2  辨识所得原始层热导率参数

    Table  2.   Thermal conductivity obtained by identification method (original layer)

    温度/Kkv/(W·(m·K)−1)
    相对误差/%
    辨识值真值
    255.60.3700.39756.91
    444.60.4200.41620.91
    644.60.4720.46980.47
    1111.60.5650.52347.95
    1667.60.3170.697854.6
    下载: 导出CSV

    表  3  辨识所得碳化层热导率参数

    Table  3.   Thermal conductivity obtained by identification method (carbonized layer)

    温度/Kkc/(W·(m·K)−1)相对误差/%
    辨识值真值
    255.60.10.397574.8
    444.60.10.416275.9
    644.60.3150.469832.9
    1111.60.5250.52340.31
    1667.60.6040.60500.17
    下载: 导出CSV

    表  4  IPC材料辨识热导率

    Table  4.   Thermal conductivity parameters of IPC by identification method

    温度/K原始层辨识热导
    率/(W·(m·K)−1)
    碳化层辨识热导
    率/(W·(m·K)−1)
    3000.061800.05000
    4000.064800.05000
    5000.076000.04890
    6000.080100.04470
    7000.082800.04610
    8000.074800.03510
    9000.110000.08560
    10000.052300.06300
    11000.052400.06460
    12000.054700.12194
    13000.053700.16606
    14000.051600.16353
    15000.050000.16043
    下载: 导出CSV
  • [1] 程海明, 薛华飞, 洪长青, 等. 一种新型低密度低热导率碳/酚醛复合材料的制备与隔热性能研究[J]. 稀有金属材料与工程, 2015, 44(1): 478-481.

    CHENG H M, XUE H F, HONG C Q, et al. Fabrication and heat-insolation of a novel low-density and low thermal conductivity carbon/phenolic composite[J]. Rare Metal Materials and Engineering, 2015, 44(1): 478-481(in Chinese).
    [2] 王晓鹏, 罗振华, 张勃兴, 等. 轻质隔热纳米孔结构耐烧蚀酚醛材料[J]. 宇航材料工艺, 2014, 1: 84-88.

    WANG X P, LUO Z H, ZHANG B X, et al. Preparation and properties of ablation-resistant phenolic resin with low density, heat insulation and nanopores[J]. Aerospace Materials & Technology, 2014, 1: 84-88(in Chinese).
    [3] 张幸红, 韩杰才, 董世运, 等. 梯度功能材料制备技术及其发展趋势[J]. 宇航材料工艺, 1999, 2: 1-5. doi: 10.3969/j.issn.1007-2330.1999.01.001

    ZHANG X H, HAN J C, DONG S Y, et al. Preparing techniques and developing tendency of functionally gradient materials[J]. Aerospace Materials & Technology, 1999, 2: 1-5(in Chinese). doi: 10.3969/j.issn.1007-2330.1999.01.001
    [4] 贾献峰, 刘旭华, 乔文明, 等. 酚醛浸渍碳烧蚀体(PICA)的制备、结构及性能[J]. 宇航材料工艺, 2016, 46(1): 77-80. doi: 10.3969/j.issn.1007-2330.2016.01.013

    JIA X F, LIU X H, QIAO W M, et al. Preparation and properties of phenolic impregnated carbon ablator[J]. Aerospace Materials & Technology, 2016, 46(1): 77-80(in Chinese). doi: 10.3969/j.issn.1007-2330.2016.01.013
    [5] 贾献峰, 王际童, 龙东辉, 等. PICA-X 的制备及其炭化前后性能研究[J]. 宇航材料工艺, 2016, 46(6): 46-49.

    JIA X F, WANG J T, LONG D H, et al. Preparation and properties of PICA-X before and after carbonization[J]. Aerospace Materials & Technology, 2016, 46(6): 46-49(in Chinese).
    [6] 董金鑫, 朱召贤, 姚鸿俊, 等. 酚醛气凝胶/碳纤维复合材料的结构调控及性能研究[J]. 化工学报, 2018, 69(11): 4896-4901.

    DONG J X, ZHU Z X, YAO H J, et al. Structural control and properties of phenolic aerogel/carbon fiber composites[J]. CIESC Journal, 2018, 69(11): 4896-4901(in Chinese).
    [7] 陈昭栋, 陈丕, 陈芬, 等. 热针法瞬态测量热物性研究[J]. 中国测试, 2015, 41(1): 66-70. doi: 10.11857/j.issn.1674-5124.2015.01.017

    CHEN Z D, CHEN P, CHEN F, et al. Transient measurement of thermal physics properties by hot needles method[J]. China Measurement & Test, 2015, 41(1): 66-70(in Chinese). doi: 10.11857/j.issn.1674-5124.2015.01.017
    [8] 程文龙, 张宏泽, 赵锐. 基于蒙特卡罗反演的热探针导热系数测量方法[J]. 中国科学技术大学学报, 2008, 34(8): 414-418.

    CHENG W L, ZHANG H Z, ZHAO R, et al. A new method of thermal probe for thermal conductivities measurement based on Monte Carlo inversion[J]. Journal of University of Science and Technology of China, 2008, 34(8): 414-418(in Chinese).
    [9] 程文龙, 马然, 宋嘉梁. 基于随机近似热探针方法的土壤热物性高精度测量系统[J]. 流体机械, 2013, 41(8): 63-66. doi: 10.3969/j.issn.1005-0329.2013.08.014

    CHENG W L, MA R, SONG J L, et al. Measurement apparatus of soil thermal properties by stochastic approximation thermal probe method with high accuracy[J]. Fluid Machinery, 2013, 41(8): 63-66(in Chinese). doi: 10.3969/j.issn.1005-0329.2013.08.014
    [10] 胡芃, 陈则韶. 量热技术和热物性测定[M]. 合肥: 中国科学技术大学出版社, 2009: 79-84.

    HU P, CHEN Z S. Calorimetry and thermophysical property determination[M]. Hefei: China University of science and Technology Press, 2009: 79-84 (in Chinese).
    [11] HUANG C H, YAN J Y. An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity[J]. International Journal of Heat Mass Transfer, 1995, 38(18): 3433-3441. doi: 10.1016/0017-9310(95)00059-I
    [12] BECK J V, MCMASTERS R L. Solutions for multidimensional transient heat conduction with solid body motion[J]. International Journal of Heat and Mass Transfer, 2004, 47: 3757-3768. doi: 10.1016/j.ijheatmasstransfer.2004.03.012
    [13] ALIFANOV O M, NENAROKOMOV A V, BUDNIK S A, et al. Identification of thermal properties of materials with applications for spacecraft structures[J]. Inverse Problems in Science and Engineering, 2004, 12(5): 579-594. doi: 10.1080/1068276042000219958
    [14] 唐中华, 钱炜祺, 刘永利. 基于伴随方程法的材料热传导系数反演方法[J]. 计算物理, 2010, 27(4): 561-566. doi: 10.3969/j.issn.1001-246X.2010.04.011

    TANG Z H, QIAN W Q, LIU Y L. Thermal conductivity inversion with adjoint equation method[J]. Chinese Journal of Computational Physics, 2010, 27(4): 561-566(in Chinese). doi: 10.3969/j.issn.1001-246X.2010.04.011
    [15] 周焕林, 徐兴盛, 李秀丽, 等. 反演二维瞬态热传导问题随温度变化的导热系数[J]. 应用数学和力学, 2014, 35(12): 1341-1351. doi: 10.3879/j.issn.1000-0887.2014.12.006

    ZHOU H L, XU X S, LI X L, et al. Identification of temperature-dependent thermal conductivity for 2-D transient heat conduction problems[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1341-1351(in Chinese). doi: 10.3879/j.issn.1000-0887.2014.12.006
    [16] HOSEIN M, IRAJ P, ALI H. Inverse identification of thermal properties of charring ablators[J]. Numerical Heat Transfer, 2009, 56: 478-501. doi: 10.1080/10407780903266489
    [17] CHEN Y K, MILOS F S. Ablation and thermal response program for spacecraft heat shield analysis[J]. Journal of Spacecraft and Rockets, 2015, 36(3): 475-483.
    [18] ZIEN T F, WEI C Y. Heat transfer in the melt layer of a simple ablation model[J]. Journal of thermophysics and Heat Transfer, 1999, 13(4): 450-459. doi: 10.2514/2.6483
    [19] MAHZARI M, BRAUN R D. Time-dependent estimation of Mars Science Laboratory surface heating from simulated MEDLI data[C]//43rd AIAA Thermophysics Conference. Reston: AIAA, 2012: 2871.
    [20] KANEVCE L P, KANEVCE G H, ANGELEVSKI Z Z. Comparison of two kinds of experiments for estimation of thermal properties of ablative composite[C]//Conference on Inverse Problems in Engineering, 1999: 1-7.
    [21] OLIVEIRA A P D, ORLANDE H R B. Estimation of the heat flux at the surface of ablating materials by using temperature and surface position measurements[J]. Inverse Problems in Science and Engineering, 2004, 12(5): 563-577. doi: 10.1080/1068276042000219949
    [22] HAKKAKI-FARD A, KOWSARY F. Heat flux estimation in a charring ablator[J]. Numerical Heat Transfer, Part A, 2008, 53: 543-560.
    [23] 钱炜祺, 周宇, 何开锋, 等. 考虑烧蚀情况下的表面热流辨识[J]. 空气动力学学报, 2014, 32(6): 772-776.

    QIAN W Q, ZHOU Y, HE K F, et al. Heat flux estimation for heat transfer problem with ablation[J]. Acta Aerodynamica Sinica, 2014, 32(6): 772-776(in Chinese).
    [24] AMAR A J, BLACKWELL B F, EDWARDS J R. One-dimensional ablation using a full Newton’s method and finite control volume procedure[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(1): 71-82. doi: 10.2514/1.29610
    [25] LACHAUD J, MARTIN A, COZMUTA I, et al. Ablation workshop test case[EB/OL]. (2011-03-03)[2021-04-06]. http://ablation 2012. engineering. uky.edu/files/2012/02/Test_Case_1. pdf.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 录用日期:  2021-06-11
  • 网络出版日期:  2023-01-16
  • 刊出日期:  2021-07-06

目录

    /

    返回文章
    返回
    常见问答