留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低速冲击下碳/玻混杂复合材料红外辐射特征

赵志彬 杨正伟 李胤 寇光杰 陈金树 张炜

赵志彬,杨正伟,李胤,等. 低速冲击下碳/玻混杂复合材料红外辐射特征[J]. 北京航空航天大学学报,2023,49(1):177-186 doi: 10.13700/j.bh.1001-5965.2021.0174
引用本文: 赵志彬,杨正伟,李胤,等. 低速冲击下碳/玻混杂复合材料红外辐射特征[J]. 北京航空航天大学学报,2023,49(1):177-186 doi: 10.13700/j.bh.1001-5965.2021.0174
ZHAO Z B,YANG Z W,LI Y,et al. Infrared radiation characteristics of carbon/glass hybrid composites under low-velocity impact[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):177-186 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0174
Citation: ZHAO Z B,YANG Z W,LI Y,et al. Infrared radiation characteristics of carbon/glass hybrid composites under low-velocity impact[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):177-186 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0174

低速冲击下碳/玻混杂复合材料红外辐射特征

doi: 10.13700/j.bh.1001-5965.2021.0174
基金项目: 国家自然科学基金(52075541,52005495);中国博士后科学基金(2019M650262);陕西省自然科学基金 (2020JM-354)
详细信息
    通讯作者:

    E-mail:yangzhengwei1136@163.com

  • 中图分类号: V45; V258+.5

Infrared radiation characteristics of carbon/glass hybrid composites under low-velocity impact

Funds: National Natural Science Foundation of China (52075541,52005495); China Postdoctoral Science Foundation (2019M650262); Natural Science Foundation of Shaanxi Province (2020JM-354)
More Information
  • 摘要:

    碳/玻混杂复合材料在工业应用中表现出巨大的应用潜力。基于红外热像法试验研究了碳/玻混杂复合材料层压板与2种非混杂材料低速冲击下的红外辐射特征。通过目视、超声C扫描和光学显微镜等方法确定冲击后层压板的损伤模式,分析热图序列的时序变化特征和温度分布特征,从而表征冲击过程中的热耗散效应。结果表明:红外热成像技术非常适合监测低速冲击下纤维增强复合材料的损伤过程,通过热图序列可以建立起监测特征与各损伤模式之间的联系;同时发现碳/玻纤维的层间混杂可有效提升碳纤维强基复合材料(CFRP)的抗分层能力,随着冲击能量增加其抗分层能力愈加明显,冲击后的碳/玻混杂复合材料兼具较大的表面损伤和较小的分层损伤,拥有较好的损伤容限。

     

  • 图 1  试验设备

    Figure 1.  Test equipment

    图 2  3类层压板不同冲击能下的表面状态

    Figure 2.  Surface states of three laminates under different impact energies

    图 3  3类层压板不同冲击能下的超声C扫描结果

    Figure 3.  Ultrasonic C-scan results of three laminates under different impact energies

    图 4  冲击截面宏、微观结果

    Figure 4.  Impact sections of macroscopic and microscopic results

    图 5  层压板不同冲击能下的超声C扫描参数变化

    Figure 5.  Variation of C-scan parameters of laminates under different impact energies

    图 6  层压板冲击过程被动热成像监测热图序列

    Figure 6.  Heat map sequence of passive thermal imaging monitoring during laminate impact

    图 7  3类层压板试件表面温差随时间变化曲线

    Figure 7.  Surface temperature difference curves of three laminate specimens over time

    图 8  3类层压板试件不同冲击能量下的最大表面温差

    Figure 8.  Maximum surface temperature differences of three laminate specimens under different impact energies

    图 9  标记像素点表面温度随时间变化曲线及其局部变化曲线

    Figure 9.  Time variation curve and local variation of surface temperature of marked pixels

    图 10  试件测温线及其温差曲线

    Figure 10.  Temperature measurement lines and temperature difference curves of specimens

    表  1  两类预浸料纤维物理和力学性能参数

    Table  1.   Physical and mechanical properties of two prepreg fibers

    纤维类型丝直
    径/μm
    纤维密
    度/(g·cm−3)
    拉伸强
    度/MPa
    拉伸模
    量/GPa
    伸长
    率/%
    线密
    度/tex
    碳纤71.84 3002402.1223
    玻纤19.22.552 300812.9410
    注:1tex=1g/km。
    下载: 导出CSV

    表  2  层压板试件结构参数

    Table  2.   Structural parameters of laminate specimens

    试件杂交结构层配置面密度/(kg·m−2)厚度/mm树脂
    SI-C单碳纤维[45c/0c/−45c/90c]4S0.594.8环氧YH69
    SI-G单玻璃纤维[45g/0g/−45g/90g]4S0.824.6环氧YH69
    C-G碳/玻纤
    维混杂
    [45c/0g/−45c/90g]4S0.704.7环氧YH69
    注:下标c为铺层角度,g为单层纤维类型。
    下载: 导出CSV
  • [1] GHORI S W, SIAKENG R, RASHEED M, et al. The role of advanced polymer materials in aerospace[C]//Sustainable Composites for Aerospace Applications. Amsterdam: Elsevier, 2018: 19-34.
    [2] ZHOU J, LIAO B, SHI Y, et al. Low-velocity impact behavior and residual tensile strength of CFRP laminates[J]. Composites Part B:Engineering, 2019, 161: 300-313. doi: 10.1016/j.compositesb.2018.10.090
    [3] JAGANNATHA T D, HARISH G. Mechanical properties of carbon/glass fiber reinforced epoxy hybrid polymer composites[J]. International Journal of Mechanical Engineering and Robotics Research, 2015, 4(2): 131-137.
    [4] CHEN D D, LUO Q T, MENG M Z, et al. Low velocity impact behavior of interlayer hybrid composite laminates with carbon/glass/basalt fibres[J]. Composites Part B:Engineering, 2019, 176: 107191. doi: 10.1016/j.compositesb.2019.107191
    [5] PAPA I, BOCCARUSSO L, LANGELLA A, et al. Carbon/glass hybrid composite laminates in vinylester resin: Bending and low velocity impact tests[J]. Composite Structures, 2020, 232: 111571. doi: 10.1016/j.compstruct.2019.111571
    [6] SAFRI S N A, SULTAN M T H, JAWAID M, et al. Impact behaviour of hybrid composites for structural applications: A review[J]. Composites Part B:Engineering, 2018, 133: 112-121. doi: 10.1016/j.compositesb.2017.09.008
    [7] NAIK N K, RAMASIMHA R, ARYA H, et al. Impact response and damage tolerance characteristics of glass-carbon/epoxy hybrid composite plates[J]. Composites Part B:Engineering, 2001, 32(7): 565-574. doi: 10.1016/S1359-8368(01)00036-1
    [8] 管清宇, 冯剑飞, 夏品奇, 等. 复合材料层压板低速冲击行为及剩余拉伸强度[J]. 北京航空航天大学学报, 2021, 47(6): 1220-1232. doi: 10.13700/j.bh.1001-5965.2020.0132

    GUAN Q Y, FENG J F, XIA P Q, et al. Low-velocity impact behavior and residual tensile strength of composite laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1220-1232(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0132
    [9] ZHOU J, LIAO B, SHI Y, et al. Experimental investigation of the double impact position effect on the mechanical behavior of lowvelocity impact in CFRP laminates[J]. Composites Part B:Engineering, 2020, 193: 108020. doi: 10.1016/j.compositesb.2020.108020
    [10] 张超, 方鑫, 刘建春. 复合材料层板冰雹高速冲击损伤预测及失效分析[J]. 北京航空航天大学学报, 2022, 48(4): 698-707.

    ZHANG C, FANG X, LIU J C. Damage prediction and failure mechanism of composite laminates under high-velocity hailstone impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 698-707(in Chinese).
    [11] LOGANATHAN T M, SULTAN M T H, MUHAMMAD AMIR S M, et al. Infrared thermographic and ultrasonic inspection of randomly-oriented short-natural fiber-reinforced polymeric composites[J]. Frontiers in Materials, 2021, 7: 604459. doi: 10.3389/fmats.2020.604459
    [12] DOSHVARPASSAND S, WU C Z, WANG X Y. An overview of corrosion defect characterization using active infrared thermography[J]. Infrared Physics & Technology, 2019, 96: 366-389.
    [13] ALFREDO OSORNIO-RIOS R, ANTONINO-DAVIU J A, DE JESUS ROMERO-TRONCOSO R. Recent industrial applications of infrared thermography: A review[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 615-625. doi: 10.1109/TII.2018.2884738
    [14] VAVILOV V, BURLEIGH D. Infrared thermography and thermal nondestructive testing[M]. Cham: Springer International Publishing, 2020: 7-11.
    [15] BAGAVATHIAPPAN S, LAHIRI B B, SARAVANAN T, et al. Infrared thermography for condition monitoring: A review[J]. Infrared Physics & Technology, 2013, 60: 35-55.
    [16] KRSTULOVIC-OPARA L, KLARIN B, NEVES P, et al. Thermal imaging and thermoelastic stress analysis of impact damage of composite materials[J]. Engineering Failure Analysis, 2011, 18(2): 713-719. doi: 10.1016/j.engfailanal.2010.11.010
    [17] JAKUBCZAK P, BIENIAŚ J, SUROWSKA B. Impact damage live-time analysis of modern composite materials using thermography[J]. Composites Theory and Practice, 2014, 14: 219-223.
    [18] MEOLA C, CARLOMAGNO G M. Impact damage in GFRP: New insights with infrared thermography[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(12): 1839-1847. doi: 10.1016/j.compositesa.2010.09.002
    [19] MEOLA C, BOCCARDI S, CARLOMAGNO G M, et al. Nondestructive evaluation of carbon fibre reinforced composites with infrared thermography and ultrasonics[J]. Composite Structures, 2015, 134: 845-853. doi: 10.1016/j.compstruct.2015.08.119
    [20] MEOLA C, BOCCARDI S, BOFFA N D, et al. New perspectives on impact damaging of thermoset-and thermoplastic-matrix composites from thermographic images[J]. Composite Structures, 2016, 152: 746-754. doi: 10.1016/j.compstruct.2016.05.083
    [21] MEOLA C, BOCCARDI S, CARLOMAGNO G M, et al. Impact damaging of composites through online monitoring and non-destructive evaluation with infrared thermography[J]. NDT & E International, 2017, 85: 34-42.
    [22] MEOLA C, BOCCARDI S, CARLOMAGNO G M. Infrared thermography for inline monitoring of glass/epoxy under impact and quasi-static bending[J]. Applied Sciences, 2018, 8(2): 301. doi: 10.3390/app8020301
    [23] BOCCARDI S, CARLOMAGNO G M, SIMEOLI G, et al. Evaluation of impact-affected areas of glass fibre thermoplastic composites from thermographic images[J]. Measurement Science and Technology, 2016, 27(7): 075602. doi: 10.1088/0957-0233/27/7/075602
    [24] BOCCARDI S, BOFFA N D, CARLOMAGNO G M, et al. Inline monitoring of basalt-based composites under impact tests[J]. Composite Structures, 2019, 210: 152-158. doi: 10.1016/j.compstruct.2018.11.038
    [25] BOCCARDI S, CARLOMAGNO G M, BOFFA N D, et al. Infrared thermography to locate impact damage in thin and thicker carbon/epoxy panels[J]. Polymer Engineering & Science, 2017, 57(7): 657-664.
    [26] MAIERHOFER C, KRANKENHAGEN R, RÖLLIG M. Application of thermographic testing for the characterization of impact damage during and after impact load[J]. Composites Part B:Engineering, 2019, 173: 106899. doi: 10.1016/j.compositesb.2019.106899
    [27] ASTM Committee. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M-12[S]. West Conshohocken: [s.n.], 2015: 1-16.
    [28] RICHARDSON M O W, WISHEART M J. Review of low-velocity impact properties of composite materials[J]. Composites Part A:Applied Science and Manufacturing, 1996, 27(12): 1123-1131. doi: 10.1016/1359-835X(96)00074-7
    [29] KANG T J, KIM C. Impact energy absorption mechanism of largely deformable composites with different reinforcing structures[J]. Fibers and Polymers, 2000, 1(1): 45-54. doi: 10.1007/BF02874876
    [30] BIOT M A. Thermoelasticity and irreversible thermodynamics[J]. Journal of Applied Physics, 1956, 27(3): 240-253. doi: 10.1063/1.1722351
    [31] MEOLA C, CARLOMAGNO G M. Infrared thermography to evaluate impact damage in glass/epoxy with manufacturing defects[J]. International Journal of Impact Engineering, 2014, 67: 1-11. doi: 10.1016/j.ijimpeng.2013.12.010
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  5
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 录用日期:  2021-07-23
  • 网络出版日期:  2023-01-16
  • 刊出日期:  2021-07-30

目录

    /

    返回文章
    返回
    常见问答