留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车辆与二轮车预碰撞场景分析及其AEB优化

徐向阳 胡文浩 张友 王书翰 何霞 曹毅

徐向阳,胡文浩,张友,等. 车辆与二轮车预碰撞场景分析及其AEB优化[J]. 北京航空航天大学学报,2023,49(1):1-9 doi: 10.13700/j.bh.1001-5965.2021.0184
引用本文: 徐向阳,胡文浩,张友,等. 车辆与二轮车预碰撞场景分析及其AEB优化[J]. 北京航空航天大学学报,2023,49(1):1-9 doi: 10.13700/j.bh.1001-5965.2021.0184
XU X Y,HU W H,ZHANG Y,et al. Pre-crash scenarios and AEB optimization between vehicle and two-wheeler[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):1-9 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0184
Citation: XU X Y,HU W H,ZHANG Y,et al. Pre-crash scenarios and AEB optimization between vehicle and two-wheeler[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):1-9 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0184

车辆与二轮车预碰撞场景分析及其AEB优化

doi: 10.13700/j.bh.1001-5965.2021.0184
基金项目: 2020年产业技术基础公共服务平台项目(2020-0101-1-1); 中国标准化研究院项目
详细信息
    作者简介:

    徐向阳等:车辆与二轮车预碰撞场景分析及其AEB优化研究 7

    通讯作者:

    E-mail:wsh@buaa.edu.cn

  • 中图分类号: U461.91;U467.1

Pre-crash scenarios and AEB optimization between vehicle and two-wheeler

Funds: Industrial Technology Basic Public Service Platform of 2020 (2020-0101-1-1); China National Institute of Standardization Foundation
More Information
  • 摘要:

    车辆自动紧急制动(AEB)系统的应用存在大量误识别和不合理决策的挑战,在典型场景下开展测试,可以有效提高AEB的适用性。对国内外相关研究进行分析,从12类车辆与二轮车预碰撞场景中提取AEB测试重点关注的2类涉及参与方转向的场景(场景S11和S12),建立2类典型场景下的Pre-scan模型和量化描述二轮车相对于车辆运动轨迹的数学模型,并对AEB的效用及改进方向进行定性和定量分析。结果表明:场景S11和S12中,二轮车在运动坐标系下的运动轨迹仅与车辆和二轮车速度比值相关;场景S11中,仅当车辆和二轮车速度比值取为(0.7888, +∞)时,二轮车能够进入车辆AEB触发域,将AEB视场角从60°增大到90°,可有效改善AEB触发效果,速度比值范围从(0.7888, +∞)增加至(0.2033, +∞);场景S12中,当二轮车和车辆速度比值取为(0, (∆v+2.46)/9.64)时,车辆AEB具有较好的触发效果,将AEB触发宽度从1.5 m扩大至 2 m时,对AEB触发效果的改善幅度不大。研究成果可为AEB系统的改进优化提供技术支撑。

     

  • 图 1  典型AEB触发模型

    Figure 1.  Typical AEB trigger model

    图 2  场景S11参与方运动轨迹特征

    Figure 2.  Trajectory characteristics of participants in S11

    图 3  场景S11 Pre-scan模型

    Figure 3.  Pre-scan model of scenario S11

    图 4  场景S11参与方相对运动轨迹

    Figure 4.  Relative trajectories of participants in scenario S11

    图 5  不同$ {\eta _{{\text{vt}}}} $下场景S11参与方相对运动轨迹

    Figure 5.  Relative participants trajectories of different $ {\eta _{{\rm{vt}}}} $ in scenario S11

    图 6  场景S12参与方运动特征

    Figure 6.  Trajectory characteristics of participants in S12

    图 7  场景S12 Pre-scan模型

    Figure 7.  Pre-scan model of scenario S12

    图 8  场景S12参与方相对运动轨迹

    Figure 8.  Relative trajectories of participants in scenario S12

    图 9  不同$ {\rho _{{\text{tv}}}} $下场景S12参与方相对运动轨迹

    Figure 9.  Relative participants trajectories of different $ {\rho_{{\rm{tv}}}} $ in scenario S12

    图 10  场景S12下$ y $$ {\rho _{{\text{tv}}}} $的关系

    Figure 10.  Relationship between $ y $ and $ {\rho _{{\rm{tv}}}} $ in scenario S12

    表  1  汽车与二轮车预碰撞场景

    Table  1.   Pre-crash scenario between vehicle and two-wheeler

    场景类型序号场景描述场景图示
    相向运动S11在十字路口,车辆直行与对向左转二轮车发生碰撞
    S12在十字路口,车辆左转与对向直行二轮车发生碰撞
    S13在直线路段,车辆向左变更车道与对向直行二轮车发生碰撞
    垂向运动S21在十字路口,车辆直行与从左侧出现直行二轮车发生碰撞
    S22在十字路口,车辆直行与从右侧出现直行二轮车发生碰撞
    S23在十字路口,车辆左转与从左侧出现直行二轮车发生碰撞
    S24在十字路口,车辆左转与从右侧出现直行二轮车发生碰撞
    同向运动S31在直线路段,车辆直行与前方直行二轮车发生追尾碰撞
    S32在十字路口,车辆直行与同向左转二轮车发生碰撞
    S33在十字路口,车辆左转与同向直行二轮车发生碰撞
    S34在十字路口,车辆右转与同向直行二轮车发生碰撞。
    S35在十字路口,车辆左转调头与同向直行二轮车发生碰撞
    下载: 导出CSV

    表  2  典型AEB参数条件

    Table  2.   Typical AEB parameter conditions

    参数${\rm{FoV} }$/(°)触发宽度w/m探测距离$ L/{\rm{m}} $$ {{\rm{TTC}}}_{{\rm{max}}}/{\rm{s}} $
    数值601.5401
    下载: 导出CSV
  • [1] FILDES B, KEALL M, BOS N, et al. Effectiveness of low speed autonomous emergency braking in real-world rear-end crashes[J]. Accident Analysis and Prevention, 2015, 81: 24-29. doi: 10.1016/j.aap.2015.03.029
    [2] NHTSA. Manufacturers make progress on voluntary commitment to include automatic emergency braking on all new vehicles[EB/OL]. (2017-12-21)[2021-04-10].https://www.nhtsa.gov/press-releases/nhtsa-iihs-announcement-aeb.
    [3] 中国汽车技术研究中心有限公司. C-NCAP管理规则(2021年版)[S]. 天津: 中国汽车技术研究中心有限公司, 2020.

    China Automotive Technology & Research Center Company Limited. C-NCAP management regulation(2021)[S]. Tianjin: China Automotive Technology & Research Center Company Limited, 2020(in Chinese).
    [4] Euro NCAP. Test protocol AEB VRU systems[S]. [S.l.]: Euro NCAP, 2018.
    [5] Euro NCAP. Euro NCAP 2025 roadmap[S]. [S.l.]: Euro NCAP, 2018.
    [6] World Health Organization. Global status report on road safety 2018[R]. Geneve: World Health Organization, 2018.
    [7] 中华人民共和国公安部交通管理局. 中华人民共和国道路交通事故统计年报(2017年度)[R]. 北京: 中华人民共和国公安部交通管理局, 2018.

    Traffic Administration Bureau of the Ministry of Public Security of the People’s Republic of China. The People’s Republic of China road traffic accident annual statistic report (2017) [R]. Beijing: Traffic Administration Bureau of the Ministry of Public Security of the People’s Republic of China, 2018(in Chinese).
    [8] LIERS H. Analysis of the accident scenario of powered two-wheelers on the basis of real-world accidents[C]//Expert Symposium on Accident Research (ESAR), 2012: 101-115.
    [9] 李霖, 朱西产, 刘颖, 等. 涉及骑车人的典型交通危险场景[J]. 同济大学学报(自然科学版), 2013, 42(7): 1082-1087.

    LI L, ZHU X C, LIU Y, et al. Typical traffic risk scenarios relate to pedal cyclist[J]. Journal of Tongji University (Natural Science), 2013, 42(7): 1082-1087(in Chinese).
    [10] 徐向阳, 周兆辉, 胡文浩, 等. 基于事故数据挖掘的AEB路口测试场景[J]. 北京航空航天大学学报, 2020, 46 (10): 1817-1825.

    XU X Y, ZHOU Z H, HU W H, et al. Intersection test scenarios for AEB based on accident data mining[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (10): 1817-1825(in Chinese).
    [11] 胡林, 易平, 黄晶, 等. 基于真实事故案例的自动紧急制动系统两轮车测试场景研究[J]. 汽车工程, 2018, 40(12): 1435-1446.

    HU L, YI P, HUANG J, et al. A research on test scenes of two-wheeled vehicles for automatic emergency braking system based on real accident cases[J]. Automotive Engineering, 2018, 40(12): 1435-1446(in Chinese).
    [12] NITSCHE P, THOMAS P, STUETZ R, et al. Pre-crash scenarios at road junctions: A clustering method for car crash data[J]. Accident Analysis and Prevention, 2017, 107: 137-151.
    [13] SUI B, LUBBE N, BARGMAN J, et al. A clustering approach to developing car-to-two-wheeler test scenarios for the assessment of automated emergency braking in China using in-depth Chinese crash data[J]. Accident Analysis and Prevention, 2019, 132: 105242.
    [14] CAO Y, XIAO L Y, DONG H L, et al. Typical pre-crash scenarios reconstruction for two-wheelers and passenger vehicles and its application in parameter optimization of AEB system based on NAIS database[C]//Proceedings of the 26th International Technical Conference on the Enhanced Safety of Vehicles (ESV), 2019, 19: 0272.
    [15] HU W H, XU X Y, ZHOU Z H, et al. Mining and comparative analysis of typical pre-crash scenarios from IGLAD[J]. Accident Analysis and Prevention, 2020, 145: 105699.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  5
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 录用日期:  2021-07-04
  • 网络出版日期:  2023-01-16
  • 刊出日期:  2021-07-20

目录

    /

    返回文章
    返回
    常见问答