留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脑电信号相位传递熵的谎言机制研究

韦思宏 张家琦 黎峰 康倩若 高军峰

韦思宏,张家琦,黎峰,等. 基于脑电信号相位传递熵的谎言机制研究[J]. 北京航空航天大学学报,2023,49(1):23-30 doi: 10.13700/j.bh.1001-5965.2021.0187
引用本文: 韦思宏,张家琦,黎峰,等. 基于脑电信号相位传递熵的谎言机制研究[J]. 北京航空航天大学学报,2023,49(1):23-30 doi: 10.13700/j.bh.1001-5965.2021.0187
WEI S H,ZHANG J Q,LI F,et al. Lie mechanism based on phase transfer entropy of EEG signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):23-30 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0187
Citation: WEI S H,ZHANG J Q,LI F,et al. Lie mechanism based on phase transfer entropy of EEG signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):23-30 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0187

基于脑电信号相位传递熵的谎言机制研究

doi: 10.13700/j.bh.1001-5965.2021.0187
基金项目: 国家自然科学基金(61773408);中央高校基本科研业务费专项资金(CZZ19004,CZY20039)
详细信息
    通讯作者:

    E-mail: Junfengmst@163.com

  • 中图分类号: R338

Lie mechanism based on phase transfer entropy of EEG signals

Funds: National Natural Science Foundation of China (61773408); The Fundamental Research Funds for the Central Universities(CZZ19004,CZY20039)
More Information
  • 摘要:

    说谎是复杂的认知过程,其执行控制功能需要不同脑区的共同参与,相关研究证实了这些脑区之间存在相互作用。针对当前脑电信号特征提取方法有限及谎言机制尚不明确的问题,利用相位传递熵构建了谎言实验过程中脑电信号的脑网络,并分析了诚实组和说谎组不同脑区间的效应连接差异。采用标准的三刺激实验模式对60名受试者进行说谎检测实验,同步采集所有受试者的脑电信号并进行预处理;利用相位传递熵构建效应连接矩阵,通过统计方法对矩阵中的每一条边进行2组间的熵值差异分析,选取具有显著性差异的导联对上的熵值作为全连接神经网络的分类特征,结果显示,分类准确率为96.75%,说明相位传递熵指标可以有效区分说谎者和诚实者2类人群的脑电信号;对2类人群大脑功能网络的分析结果显示,与诚实者相比,说谎类人群的额叶、顶叶和颞叶之间存在更强的信息流动,表明说谎行为需要协调和使用更多的大脑资源。研究结果有助于揭示说谎状态下大脑的神经活动机制。

     

  • 图 1  测谎实验示意图

    Figure 1.  Schematic diagram of polygraph experiment

    图 2  EEG信号处理流程

    Figure 2.  Flow chart of EEG signal processing

    图 3  组平均$ {\text{dPTE}} $邻接矩阵对比

    Figure 3.  Comparison of group average dPTE adjacency matrix

    图 4  FCNN结构示意图

    Figure 4.  Structure schematic diagram of FCNN

    图 5  FCNN与SVM分类准确率对比

    Figure 5.  Comparison of classification accuracy between FCNN and SVM

    图 6  说谎与诚实受试者脑网络平均对比

    Figure 6.  Average brain network comparison between lying and honest subjects

    表  1  具有显著性差异的6个有向电极对平均dPTE值统计分析结果

    Table  1.   Statistical analysis results of average dPTE of 6 directed electrode pairs with significant differences

    电极对平均dPTE值
    $ x $$ y $说谎组诚实组
    P4T80.61150.4670
    P4Pz0.57760.4740
    FCzF70.36040.5331
    FP2T80.56680.4227
    P4FT80.60610.4620
    F7FT80.59630.4818
    下载: 导出CSV

    表  2  电极及其相应的投射皮层区域

    Table  2.   Electrodes and their corresponding projection cortical areas

    电极 Brodmann分区脑区名称
    P4顶叶R Inferior parietal Gyrus (R-IPG)后顶回
    PzM Superior parietal Lobe(M-SPL)顶上小叶
    F7额叶L Inferior frontal Gyrus (L-IFG)额下回
    FP2R Superior frontal Gyrus (R-SFG)额上回
    FCzM Superior frontal Gyrus (M-SFG)额上回
    T8颞叶R Middle temporal Gyrus (R-MTG)颞中回
    FT8R Superior temporal Gyrus (R-STG)颞上回
     注:R表示右; L表示左;M表示中。
    下载: 导出CSV
  • [1] TURRI A, TURRI J. The truth about lying[J]. Cognition:International Journal of Cognitive Psychology, 2015, 138: 161-168. doi: 10.1016/j.cognition.2015.01.007
    [2] GÜNTER K. Behavioral correlates of statement credibility: Theories, paradigms, and results[M]. Berlin: Springer, 1989: 281-282.
    [3] TOMASH J, REED P. The generalization of a conditioned response to deception across the public/private barrier[J]. Learning and Motivation, 2013, 44(3): 196-203. doi: 10.1016/j.lmot.2012.12.001
    [4] GAO J F, YAN X G, SUN J C, et al. Denoised P300 and machine learning-based concealed information test method[J]. Computer Methods and Programs in Biomedicine, 2011, 104(3): 410-417. doi: 10.1016/j.cmpb.2010.10.002
    [5] 彭丝雨, 周到, 张家琦, 等. 基于互信息的脑网络及测谎研究[J]. 电子学报, 2019, 47(7): 1551-1556. doi: 10.3969/j.issn.0372-2112.2019.07.021

    PENG S Y, ZHOU D, ZHANG J Q, et al. Research on mutual information-based brain network and lie detection[J]. Acta Electronica Sinica, 2019, 47(7): 1551-1556(in Chinese). doi: 10.3969/j.issn.0372-2112.2019.07.021
    [6] BABLANI A, EDLA D R, TRIPATHI D, et al. An efficient concealed information test: EEG feature extraction and ensemble classification for lie identification[J]. Machine Vision and Applications, 2019, 30(5): 813-832. doi: 10.1007/s00138-018-0950-y
    [7] WANG H, CHANG W, ZHANG C. Functional brain network and multichannel analysis for the P300-based brain computer interface system of lying detection[J]. Expert Systems with Applications, 2016, 53: 117-128. doi: 10.1016/j.eswa.2016.01.024
    [8] WANG Y, CHUN N W, SIONG N K, et al. An electroencephalography network and connectivity analysis for deception in instructed lying tasks[J]. Plos One, 2015, 10(2): e0116522. doi: 10.1371/journal.pone.0116522
    [9] KOHAN M D, NASRABADI A M, SHARIFI A, et al. Interview based connectivity analysis of EEG in order to detect deception[J]. Medical Hypotheses, 2020, 136: 109517. doi: 10.1016/j.mehy.2019.109517
    [10] LI M, LUO X Y, YANG J F, et al. Applying a locally linear embedding algorithm for feature extraction and visualization of MI-EEG[J]. Journal of Sensors, 2016, 2016: 7481946.
    [11] MURIEL L A, FELIX S, SATU P, et al. Phase transfer entropy: A novel phase-based measure for directed connectivity in net-works coupled by oscillatory interactions[J]. Neuroimage, 2014, 85: 853-872. doi: 10.1016/j.neuroimage.2013.08.056
    [12] HILLEBRAND A, TEWARIE P, DELLEN E V, et al. Direction of information flow in large-scale resting-state networks is frequency-dependent[J]. Proceedings of the National Academy of Sciences, 2016, 113(14): 3867-3872. doi: 10.1073/pnas.1515657113
    [13] MEENAKSHI D, EDWIN V D, LOTTE B, et al. EEG-directed connectivity from posterior brain regions is decreased in dementia with Lewy bodies: A comparison with Alzheimer’s disease and controls[J]. Neurobiology of Aging, 2016, 41: 122-129. doi: 10.1016/j.neurobiolaging.2016.02.017
    [14] FATEMEH H, MARYAM M, REZA R. Graph theory analysis of directed functional brain networks in major depressive disorder based on EEG signal[J]. Journal of Neural Engineering, 2020, 17(2): 026010. doi: 10.1088/1741-2552/ab7613
    [15] VICENTE R, WIBRAL M, LINDNER M, et al. Transfer entropy—A model-free measure of effective connectivity for the neurosciences[J]. Journal of Computational Neuroscience, 2011, 30(1): 45-67. doi: 10.1007/s10827-010-0262-3
    [16] EMARA H M, ELWEKEIL M, TAHA T E, et al. Hilbert transform and statistical analysis for channel selection and epileptic seizure prediction[J]. Wireless Personal Communications, 2021, 116(2): 3371-3395.
    [17] CHOWDHURY M S N, DUTTA A, ROBISON M K, et al. Deep neural network for visual stimulus-based reaction time estimation using the periodogram of single-trial EEG[J]. Sensors, 2020, 20(21): 6090. doi: 10.3390/s20216090
    [18] ARASTEH A, MORADI M H, JANGHORBANI A. A novel method based on empirical mode decomposition for P300-based detection of deception[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(11): 2584-2593. doi: 10.1109/TIFS.2016.2590938
    [19] VDAS D, DATTA S, BHATTACHARJEE T, et al. Eliminating individual bias to improve stress detection from multimodal physiological data[C]//2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Piscataway: IEEE Press, 2018: 5753-5758.
    [20] JAMES G, WITTEN D, HASTIE T, et al. An introduction to statistical learning: With applications in R[M]. Berlin: Springer, 2013: 176-177.
    [21] GAO J F, LANG L, YANG Y, et al. A novel concealed information test method based on independent component analysis and support vector machine[J]. Clinical EEG and Neuroscience, 2012, 43(1): 54-63. doi: 10.1177/1550059411428715
    [22] KOESSLER L, MAILLARD L, BENHADID A, et al. Automated cortical projection of EEG sensors: Anatomical correlation via the international 10-10 system[J]. Neuroimage, 2009, 46(1): 64-72. doi: 10.1016/j.neuroimage.2009.02.006
    [23] XIA M R, WANG J H, HE Y. BrainNet Viewer: A network visualization tool for human brain connectomics[J]. Plos One, 2013, 8(7): e68910. doi: 10.1371/journal.pone.0068910
    [24] GANIS G, ROSENFELD J P, MEIXNER J, et al. Lying in the scanner: Covert countermeasures disrupt deception detection by functional magnetic resonance imaging[J]. Neuroimage, 2011, 55(1): 312-319. doi: 10.1016/j.neuroimage.2010.11.025
    [25] BORST J P, ANDERSON J R. Using model-based functional MRI to locate working memory updates and declarative memory retrievals in the fronto-parietal network[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(5): 1628-1633. doi: 10.1073/pnas.1221572110
    [26] CHRIST S E, ESSEN D C V, WATSON J M, et al. The contributions of prefrontal cortex and executive control to deception: Evidence from activation likelihood estimate meta-analyses[J]. Cerebral Cortex, 2009, 19(7): 1557-1566.
    [27] CHAN C, CHETWYN C H, SUN D, et al. Unfolding the spatial and temporal neural processing of lying about face familiarity[J]. Cerebral Cortex, 2015, 25(4): 927-936. doi: 10.1093/cercor/bht284
    [28] HEBART M N, HESSELMANN G. What visual information is processed in the human dorsal stream?[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2012, 32(24): 8107-8109. doi: 10.1523/JNEUROSCI.1462-12.2012
    [29] KARTON I, BACHMANN T. Disrupting dorsolateral prefrontal cortex by rTMS reduces the P300 based marker of deception[J]. Brain and Behavior, 2017, 7(4): e00656. doi: 10.1002/brb3.656
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  3
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 录用日期:  2021-05-31
  • 网络出版日期:  2023-01-16
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回
    常见问答