留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

使用三天线的联合定姿和欺骗检测方法

陈佳佳 袁洪 徐颖 于丰正

陈佳佳,袁洪,徐颖,等. 使用三天线的联合定姿和欺骗检测方法[J]. 北京航空航天大学学报,2023,49(1):128-137 doi: 10.13700/j.bh.1001-5965.2021.0189
引用本文: 陈佳佳,袁洪,徐颖,等. 使用三天线的联合定姿和欺骗检测方法[J]. 北京航空航天大学学报,2023,49(1):128-137 doi: 10.13700/j.bh.1001-5965.2021.0189
CHEN J J,YUAN H,XU Y,et al. Joint attitude determination and spoofing detection method using three antennas[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):128-137 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0189
Citation: CHEN J J,YUAN H,XU Y,et al. Joint attitude determination and spoofing detection method using three antennas[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):128-137 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0189

使用三天线的联合定姿和欺骗检测方法

doi: 10.13700/j.bh.1001-5965.2021.0189
基金项目: 中国科学院青年创新促进会(E03314020D); 中国科学院科研仪器设备研制项目(YJKYYQ20200069)
详细信息
    通讯作者:

    E-mail: yuanhong@aircas.ac.cn

  • 中图分类号: TN967.1

Joint attitude determination and spoofing detection method using three antennas

Funds: The Youth Innovation Promotion Association CAS (E03314020D); The Scientific Instrument Developing Project of the Chinese Academy of Sciences (YJKYYQ20200069)
More Information
  • 摘要:

    全球卫星导航系统(GNSS)的安全性已经引发了广泛关注。使用多天线的欺骗检测方法由于其独一无二的空间特性,已成为当前最有效的欺骗检测方法之一。提出一种使用三天线的联合定姿和欺骗检测方法,能够在确定天线载体姿态的同时检测出欺骗信号的存在。针对直接定姿法受限于基线向量精度的问题,使用长度约束的基线向量估计方法以获得高精度定姿结果。在姿态信息已知的前提下,根据星历信息、姿态变换矩阵及天线的几何关系可以获得载波相位单差的期望值。使用误差平方和(SSE)来评估载波相位单差观测值和期望值之间的偏差,并构建了欺骗信号的二元检验。结果表明:在无欺骗的情形下,所提方法能降低定姿的标准差76.1%以上;在有欺骗的情形,所提方法能够实现100%检测率,并降低定姿的标准差77.3%以上。

     

  • 图 1  载体坐标系和ENU坐标系

    Figure 1.  Body coordinate frame and ENU coordinate frame

    图 2  系统结构示意图

    Figure 2.  System structure diagram

    图 3  ENU坐标系下的卫星分布

    Figure 3.  Satellite distribution in ENU coordinate system

    图 4  ENU坐标系下的基线向量观测值和估计值

    Figure 4.  The observed and estimated values of baseline vector in ENU coordinate system

    图 5  姿态角的误差

    Figure 5.  Error of attitude angle

    图 6  SSE统计值的概率密度分布

    Figure 6.  Probability density distribution of SSE statistics

    图 7  载体坐标系下的卫星分布

    Figure 7.  Satellite distribution in body coordinate system

    图 8  有欺骗信号时姿态角误差的概率密度分布

    Figure 8.  Probability density distribution of attitude angle error with spoofing signals

    图 9  有欺骗信号SSE统计值的概率密度分布

    Figure 9.  Probability density distribution of SSE statistics with spoofing signals

    图 10  UB482接收机实物图

    Figure 10.  Physical picture of UB482 receiver

    图 11  RGA30-DV转发放大器

    Figure 11.  Physical picture of RGA30-DV repeater amplifier

    图 12  基线向量观测值的定姿结果

    Figure 12.  Attitude determination results of baseline vector observations

    图 13  基线向量估计值的定姿结果

    Figure 13.  Attitude determination results of baseline vector estimation

    图 14  欺骗场景的SSE统计值

    Figure 14.  SSE statistics in spoofing scenario

    表  1  基线向量解算结果的统计量

    Table  1.   Statistics of baseline vector solution results

    项目时间/s统计值e12/mn12/mu12/m
    观测值均值−0.9660.0000.259
    标准差0.00620.00710.0141
    传统法593.8均值−0.9660.0000.259
    标准差0.00170.00190.0029
    线性化法141.2均值−0.9660.0000.259
    标准差0.00160.00170.0030
    下载: 导出CSV

    表  2  姿态角误差的均值和标准差

    Table  2.   Mean and standard deviation of attitude angle error

    项目统计值航向角/(°)俯仰角/(°)横滚角/(°)
    观测值均值−0.00490.0060−0.0036
    标准差0.42270.83580.8251
    估计值均值−0.00080.0004−0.0003
    标准差0.10080.17420.1748
    下载: 导出CSV

    表  3  有欺骗信号时姿态角误差的统计值

    Table  3.   Statistical values of attitude angle error with spoofing signals

    项目统计值航向角/(°)俯仰角/(°)横滚角/(°)
    观测值均值7.478 0−2.656 99.070 9
    均方根7.489 82.782 99.099 6
    标准差0.419 00.828 00.722 5
    估计值均值−0.229 3−0.353 3−0.380 9
    均方根0.360 60.680 00.588 8
    标准差0.278 00.581 00.449 0
    下载: 导出CSV

    表  4  姿态角均值和标准差

    Table  4.   Mean and standard deviation of attitude angle

    项目统计值航向角/(°)俯仰角/(°)横滚角/(°)
    观测值均值−60.31−2.21−0.30
    标准差2.422.653.14
    估计值均值−62.29−1.081.86
    标准差0.320.600.37
    下载: 导出CSV
  • [1] BROUMANDAN A, JAFARNIA-JAHROMI A, DANESHMAND S, et al. Overview of spatial processing approaches for GNSS structural interference detection and mitigation[J]. Proceedings of the IEEE, 2016, 104(6): 1246-1257. doi: 10.1109/JPROC.2016.2529600
    [2] WANG F, LI H, LU M Q. GNSS spoofing detection based on unsynchronized double-antenna measurements[J]. IEEE Access, 2018, 6: 31203-31212. doi: 10.1109/ACCESS.2018.2845365
    [3] CHEN J J, XU Y, YUAN H, et al. A new GNSS spoofing detection method using two antennas[J]. IEEE Access, 2020, 8: 110738-110747. doi: 10.1109/ACCESS.2020.3002804
    [4] DANESHMAND S, JAFARNIA A, BROUMANDAN A, et al. Low-complexity spoofing mitigation[J]. GPS World Magazine, 2011, 22: 44-46.
    [5] 黄龙, 雍玲, 徐博, 等. 采用双天线载波相位差技术的卫星导航接收机抗欺骗方法[J]. 国防科技大学学报, 2016, 38(4): 103-106. doi: 10.11887/j.cn.201604016

    HUANG L, YONG L, XU B, et al. Analysis of carry phase difference detection for satellite navigation receivers anti-spoofing[J]. Journal of National University of Defense Technology, 2016, 38(4): 103-106(in Chinese). doi: 10.11887/j.cn.201604016
    [6] SWASZEK P F, HARTNETT R J. A multiple COTS receiver GNSS spoof detector-Extensions[C]//Proceedings of the International Technical Meeting of the Institute of Navigation. San Diego: Institute of Navigation, 2014: 1-12.
    [7] BORIO D, GIOIA C. A dual-antenna spoofing detection system using GNSS commercial receivers[C]//Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation. Tampa: Institute of Navigation, 2015: 325-330.
    [8] PSIAKI M L, O’HANLON B W, POWELL S P, et al. GNSS spoofing detection using two-antenna differential carrier phase[C]//Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation. Tampa: Institute of Navigation, 2014: 2776-2800.
    [9] KONOVALTSEV A, CUNTZ M, HAETTICH C, et al. Autonomous spoofing detection and mitigation in a GNSS receiver with an adaptive antenna array[C]//Proceedings of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation. Nashville: Institute of Navigation, 2013: 2937-2948.
    [10] MEUER M, KONOVALTSEV A, CUNTZ M, et al. Robust joint multi-antenna spoofing detection and attitude estimation using direction assisted multiple hypotheses RAIM[C]//Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation. Nashville: Institute of Navigation, 2012: 3007-3016.
    [11] XU H L, CUI X W, SHEN J N, et al. A two-step beam-forming method based on carrier phases for GNSS adaptive array anti-jamming[C]// The International Technical Meeting of the Institute of Navigation, Proceedings of the 2016 International Technical Meeting of the Institute of Navigation, Monterey: Institute of Navigation, 2016: 793-804.
    [12] SWASZEK P F, PRATZ S A, AROCHO B N, et al. GNSS spoof detection using shipboard IMU measurements[C]//Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation. Tampa: Institute of Navigation, 2014: 745-758.
    [13] APPEL M, KONOVALTSEV A, MEURER M. Joint antenna array attitude tracking and spoofing detection based on phase difference measurements[C]//Proceedings of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation. Portland: Institute of Navigation, 2016: 3018-3026.
    [14] 张鑫, 庞晶, 苏映雪, 等. 天线阵载波相位双差的欺骗干扰检测技术[J]. 国防科技大学学报, 2014, 36(4): 55-60. doi: 10.11887/j.cn.201404010

    ZHANG X, PANG J, SU Y X, et al. Spoofing detection technique on antenna array carrier phase double difference[J]. Journal of National University of Defense Technology, 2014, 36(4): 55-60(in Chinese). doi: 10.11887/j.cn.201404010
    [15] ZHANG P, ZHAO Y Z, LIN H, et al. A novel GNSS attitude determination method based on primary baseline switching for a multi-antenna platform[J]. Remote Sensing, 2020, 12(5): 747. doi: 10.3390/rs12050747
    [16] HOFMANN-WELLENHOF B, LICHTENEGGER H, WASLE E. GNSS-global navigation satellite systems: GPS, GLONASS, Galileo, and more[M]. Vienna: Springer Vienna, 2007: 441-450.
    [17] BUIST P J, TEUNISSEN P J G, GIORGI G, et al. Multiplatform instantaneous GNSS ambiguity resolution for triple- and quadruple-antenna configurations with constraints[J]. International Journal of Navigation and Observation, 2009, 2009: 565426.
    [18] GONG A, ZHAO X B, PANG C L, et al. GNSS single frequency, single epoch reliable attitude determination method with baseline vector constraint[J]. Sensors, 2015, 15(12): 30093-30103. doi: 10.3390/s151229774
    [19] 舒宝, 刘晖, 张晋升, 等. 基于BDS/GPS组合定位的部分模糊度固定效果分析[J]. 武汉大学学报·信息科学版, 2017, 42(7): 989-994. doi: 10.13203/j.whugis20150017

    SHU B, LIU H, ZHANG J S, et al. Performance assessment of partial ambiguity resolution based on BDS/GPS combined positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 989-994(in Chinese). doi: 10.13203/j.whugis20150017
    [20] GROVES P D. Principles of GNSS, inertial, and multisensor integrated navigation systems[M]. 2nd ed. Boston: Artech House, 2013: 288-289.
    [21] DEVORE J L. Probability and statistics for engineering and the sciences[M]. Beijing: China Machine Press, 2005: 136-172.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  4
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 录用日期:  2021-09-23
  • 网络出版日期:  2023-01-16
  • 刊出日期:  2021-10-09

目录

    /

    返回文章
    返回
    常见问答