留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电动汽车双边LCC无线充电系统传导电磁干扰

吕梦圆 翟丽 胡桂兴

吕梦圆, 翟丽, 胡桂兴等 . 电动汽车双边LCC无线充电系统传导电磁干扰[J]. 北京航空航天大学学报, 2022, 48(10): 2079-2086. doi: 10.13700/j.bh.1001-5965.2021.0191
引用本文: 吕梦圆, 翟丽, 胡桂兴等 . 电动汽车双边LCC无线充电系统传导电磁干扰[J]. 北京航空航天大学学报, 2022, 48(10): 2079-2086. doi: 10.13700/j.bh.1001-5965.2021.0191
LYU Mengyuan, ZHAI Li, HU Guixinget al. Conducted electromagnetic interference of wireless charging system with bilateral LCC of electric vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2079-2086. doi: 10.13700/j.bh.1001-5965.2021.0191(in Chinese)
Citation: LYU Mengyuan, ZHAI Li, HU Guixinget al. Conducted electromagnetic interference of wireless charging system with bilateral LCC of electric vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2079-2086. doi: 10.13700/j.bh.1001-5965.2021.0191(in Chinese)

电动汽车双边LCC无线充电系统传导电磁干扰

doi: 10.13700/j.bh.1001-5965.2021.0191
基金项目: 

国家重点研发计划 2017YFB0102400

详细信息
    通讯作者:

    翟丽, E-mail: zhaili26@bit.edu.cn

  • 中图分类号: V221+.3;TB553

Conducted electromagnetic interference of wireless charging system with bilateral LCC of electric vehicle

Funds: 

National Key R & D Program of China 2017YFB0102400

More Information
  • 摘要:

    对电动汽车双边LCC拓扑结构无线充电系统传导电磁干扰进行研究,依据标准SAE J2954构建了3.7 kW的无线充电系统传导电磁干扰高频电路模型,采用测量和理论计算结合的方法,提取耦合线圈、线缆和补偿电路元件的高频寄生参数。利用软件ANSYS Maxwell和Simplorer进行系统传导干扰建模仿真分析,通过仿真结果可以看出,在150 kHz~30 MHz频段共模干扰比差模干扰显著。通过系统传导发射试验验证了仿真模型的准确性。

     

  • 图 1  典型无线充电系统原理

    Figure 1.  Schematic diagram of typical wireless charging system

    图 2  无线充电系统各模块方案

    Figure 2.  Solution to each module of wireless charging system

    图 3  耦合装置

    Figure 3.  Coupling device

    图 4  电气特性联合仿真结果

    Figure 4.  Co-simulation of electrical characteristics

    图 5  MOSFET模型

    Figure 5.  MOSFET model

    图 6  MOSFET输出电压波形

    Figure 6.  Output voltage waveform of MOSFET

    图 7  无线充电系统高频电路模型

    Figure 7.  High-frequency circuit model of wireless charging system

    图 8  耦合线圈参数提取

    Figure 8.  Parameter extraction of coupling coil

    图 9  正极线缆的等效电路及阻抗测量结果

    Figure 9.  Equivalent circuit and impedance measurement of positive cable

    图 10  LCC拓扑的电容和电感的阻抗

    Figure 10.  Impedances of capacitance and inductance of LCC topology

    图 11  差模干扰路径

    Figure 11.  Differential mode interference path

    图 12  差模干扰和共模干扰路径等效电路

    Figure 12.  Equivalent circuits of different mode interference and common mode interference

    图 13  共模干扰路径

    Figure 13.  Common mode interference path

    图 14  共模干扰电压和差模干扰电压

    Figure 14.  Voltage of common mode interference and different mode interference

    图 15  传导电压频谱

    Figure 15.  Conducted voltage spectrum

    图 16  无线充电系统传导发射试验布置

    Figure 16.  Experimental setup of conducted emission of wireless charging system

    图 17  传导电压试验结果

    Figure 17.  Experimental results of conducted voltage

    表  1  无线充电系统的设计指标

    Table  1.   Design specifications of wireless charger

    指标 数值
    输入电网电压Uac/V 220
    输入电网电压频率f1/Hz 50
    PFC输出直流电压Uin/V 260~425
    输出充电电压Ub/V 300~400
    工作频率f/kHz 81.38~90
    最大功率P/kW 3.7
    下载: 导出CSV

    表  2  电路元件参数

    Table  2.   Circuit element parameters

    元件名称 元件参数或选型
    整流二极管 VS-80APS12-M3
    PFC升压电感LPFC 500 μH
    PFC电容CPFC 1 500 μF/600 V
    PFC二极管 IDW40G65C5SKSA1
    逆变功率开关MOSFET IPW65R048CFDA
    逆变续流二极管 IDW10G120C5BFKSA7
    次级侧滤波电容Co 66 μF/650 V
    次级侧滤波电感Lo 158 μH
    下载: 导出CSV

    表  3  耦合线圈参数

    Table  3.   Coupling coil parameters

    参数 选型式数值
    绕线选型 800股利兹线
    绕线材料 II(16AWG4*5X24/36)
    绕线直径/mm 3.9
    线圈外半径/mm 300
    线圈内半径/mm 150
    匝数 16
    线圈耦合系数 0.352 5
    下载: 导出CSV

    表  4  铁氧体设计参数

    Table  4.   Design parameters of ferrite

    参数 数值
    单位铁氧体尺寸/(mm×mm×mm) 60×15×9
    长条铁氧体尺寸/(mm×mm×mm) 240×15×9
    短条铁氧体尺寸/(mm×mm×mm) 180×15×9
    长条铁氧体数量 18
    短条铁氧体数量 18
    铁氧体排列夹角/(°) 10
    下载: 导出CSV

    表  5  MOSFET基本特性参数

    Table  5.   Basic characteristic parameters of MOSFET

    参数 数值
    漏源电压/V 700
    漏源导通电阻/Ω 0.099
    栅极电荷/nC 127
    连续漏极电流/A 115
    输出能量/μJ 10
    体二极管的电流变化率/(A·μs-1) 300
    下载: 导出CSV

    表  6  各元件电气参数和寄生参数

    Table  6.   Electrical parameters and parasitic parameters of each component

    参数 数值
    补偿电感L1L2/μH 68.96
    补偿电感寄生电容CL1CL2/pH 61.20
    补偿电感寄生电阻RL1RL2/mΩ 463.11
    补偿电容C1C2/nF 52.28
    补偿电容寄生电感LC1LC2/nH 364.06
    补偿电容寄生电阻RC1RC2/mΩ 647.05
    补偿电容CpCs/nF 19.97
    补偿电容寄生电感LCpLCs/nH 378.18
    补偿电容寄生电阻RCpRCs/mΩ 420.61
    正极线缆寄生电感Lcable1/3/μH 1.96
    正极线缆寄生电阻Rcable1/3/mΩ 45.33
    正极线缆寄生电容Ccable1/3/pF 69.44
    负极线缆寄生电感Lcable2/4/μH 1.88
    负极线缆寄生电阻Rcable2/4/mΩ 31.64
    负极线缆寄生电容Ccable2/4/pF 70.46
    线圈电感LpLs/μH 218.81
    线圈电感寄生电阻RLpRLs/mΩ 205.72
    线圈对地寄生电容CLpCLs/nF 3.63
    线圈间寄生电容Cps/nF 21.42
    下载: 导出CSV
  • [1] SUH I S, CHO D H, FRANKE J, et al. Wireless charging technology and the future of electric transportation[M]. Warrendale: SAE Intemational, 2015: 1-13.
    [2] ZHAI L, CAO Y, LIN L W, et al. Mitigation conducted emission strategy based on transfer function from a DC-fed wireless charging system for electric vehicles[J]. Energies, 2018, 11(3): 477-493. doi: 10.3390/en11030477
    [3] LU X, WANG P, NIYATO D, et al. Wireless charging technologies: Fundamentals, standards, and network applications[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2): 1413-1452. https://ieeexplore.ieee.org/document/7327131
    [4] SAE International. Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology: T-pull test: SAE J2954[S]. Warrendale: SAE International, 2017.
    [5] IEC. Electric vehicle wireless power transfer (WPT) systems-Part 2: Specific requirements for communication between electric road vehicle (EV) and infrastructure: IEC TS 61980-2[S]. Geneva: IEC, 2019.
    [6] WANG Q D, LI W L, KANG J W, et al. Electromagnetic safety evaluation and protection methods for a wireless charging system in an electric vehicle[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(6): 1913-1925. doi: 10.1109/TEMC.2018.2875903
    [7] CHEN W T, LIU C H, LEE C, et al. Cost-effectiveness comparison of coupler designs of wireless power transfer for electric vehicle dynamic charging[J]. Energies, 2016, 9(11): 906-918. doi: 10.3390/en9110906
    [8] CHO Y, LEE S, KIM D H, et al. Thin hybrid metamaterial slab with negative and zero permeability for high efficiency and low electromagnetic field in wireless power transfer systems[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(4): 1001-1009. doi: 10.1109/TEMC.2017.2751595
    [9] ESTEBAN B, SID-AHMED M, KAR N C. A comparative study of power supply architectures in wireless EV charging systems[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6408-6422. doi: 10.1109/TPEL.2015.2440256
    [10] KIM H, SONG C, KIM D H, et al. Coil design and measurements of automotive magnetic resonant wireless charging system for high-efficiency and low magnetic field leakage[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(2): 383-400. https://ieeexplore.ieee.org/document/7387785
    [11] YIM S W. Development and demonstration of kW wireless power transmission method electric vehicle charging system[J]. KEPCO Journal on Electric Power and Energy, 2021, 7(2): 215-220. https://www.researchgate.net/publication/304887313_A_development_of_electrical_vehicle_charging_system_using_wireless_power_transfer
    [12] 靳志芳. 磁耦合谐振式无线电能传输系统线圈的电磁分析与优化设计[D]. 北京: 北京交通大学, 2017: 9-12.

    JIN Z F. Electromagnetic analysis and optimum design of coil for magnetic resonance coupling wireless power transmission system[D]. Beijing: Beijing Jiaotong University, 2017: 9-12(in Chinese).
    [13] MILLER J M, ONAR O C, CHINTHAVALI M. Primary-side power flow control of wireless power transfer for electric vehicle charging[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 147-162. doi: 10.1109/JESTPE.2014.2382569
    [14] CHOI S Y, HUH J, LEE W Y, et al. Asymmetric coil sets for wireless stationary EV chargers with large lateral tolerance by dominant field analysis[J]. IEEE Transactions on Power Electronics, 2014, 29(12): 6406-6420. doi: 10.1109/TPEL.2014.2305172
    [15] QI H Y, CHEN W J, SHA Y L, et al. High frequency conducted EMI modeling of a series-series resonant WPT system[C]//2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia. Piscataway: IEEE Press, 2017: 2279-2282.
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  110
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 录用日期:  2021-09-24
  • 网络出版日期:  2021-11-02
  • 整期出版日期:  2022-10-20

目录

    /

    返回文章
    返回
    常见问答