留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

点阵夹芯结构非接触式损伤成像研究

赵倩 冯侃

赵倩,冯侃. 点阵夹芯结构非接触式损伤成像研究[J]. 北京航空航天大学学报,2023,49(1):206-211 doi: 10.13700/j.bh.1001-5965.2021.0194
引用本文: 赵倩,冯侃. 点阵夹芯结构非接触式损伤成像研究[J]. 北京航空航天大学学报,2023,49(1):206-211 doi: 10.13700/j.bh.1001-5965.2021.0194
ZHAO Q,FENG K. Noncontact damage imaging method in lattice sandwich structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):206-211 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0194
Citation: ZHAO Q,FENG K. Noncontact damage imaging method in lattice sandwich structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):206-211 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0194

点阵夹芯结构非接触式损伤成像研究

doi: 10.13700/j.bh.1001-5965.2021.0194
基金项目: 国家自然科学基金(11702118);江苏省基础研究计划(自然科学基金)(BK20170520)
详细信息
    通讯作者:

    E-mail:fengkan@ujs.edu.cn

  • 中图分类号: O329;TB52+3

Noncontact damage imaging method in lattice sandwich structures

Funds: National Natural Science Foundation of China (11702118); Natural Science Foundation of Jiangsu Province (BK20170520)
More Information
  • 摘要:

    针对点阵夹芯结构的脱焊等损伤问题,提出了基于高频动态响应的非接触式损伤成像技术,根据无基线损伤指标分析结构高频响应,实现脱焊损伤成像。数值仿真中,依据局部共振理论,以损伤区域低阶固有频率作为中心频率计算结构在声场激振下宽频段内振动响应,采用无基线损伤指标实现损伤成像,由损伤成像结果准确识别脱焊损伤位置;试验中,采用扬声器激振,扫描时激光测振系统进行全场振型拾取的非接触式试验测量方案,成功识别脱焊损伤的位置。验证了非接触式成像技术对点阵夹芯结构脱焊损伤检测的适用性与可行性,实现了无附加结构质量、无健康基准信号下的损伤识别。

     

  • 图 1  点阵夹芯结构的几何尺寸

    Figure 1.  Dimension of lattice sandwich structure

    图 2  点阵夹芯结构单点脱焊

    Figure 2.  Single point debonding of lattice sandwich structure

    图 3  点阵夹芯结构声激入射平面波示意图

    Figure 3.  Schematic diagram of acoustic incident plane wave with lattice sandwich structure

    图 4  全场总声压级分布(6~10 kHz)

    Figure 4.  Total sound pressure level distribution in whole field

    图 5  声场激励下结构频域响应

    Figure 5.  Frequency domain response of structure excited by sound field

    图 6  声场激励下结构损伤成像

    Figure 6.  Structural damage imaging under acoustic excitation

    图 7  试验示意图

    Figure 7.  Schematic diagram of experiment

    图 8  试验损伤成像结果

    Figure 8.  Experimental damage imaging results

  • [1] 陈东, 吴永鹏, 李忠盛, 等. 轻质高强多功能点阵夹层结构研究进展[J]. 装备环境工程, 2020, 17(4): 87-94.

    CHEN D, WU Y P, LI Z S, et al. Research progress of light weight, high strength and multifunctional lattice sandwich structure[J]. Equipment Environmental Engineering, 2020, 17(4): 87-94(in Chinese).
    [2] 曾卫. 超轻多孔金属材料的多功能特性及应用[J]. 科技传播, 2016(14): 218-219. doi: 10.16607/j.cnki.1674-6708.2016.14.134

    ZENG W. Multifunctional properties and applications of ultra-light porous metal materials[J]. Science and Technology Communication, 2016(14): 218-219(in Chinese). doi: 10.16607/j.cnki.1674-6708.2016.14.134
    [3] HAN Y, JIANG W, WANG J, et al. Multi-functional sandwich structure with metamaterial antenna lattice cores: Protection, radiation and absorption[J]. IET Microwaves Antennas & Propagation, 2020, 14(7): 593-599.
    [4] 王向明, 苏亚东, 吴斌, 等. 微桁架点阵结构在飞机结构/功能一体化中的应用[J]. 航空制造技术, 2018, 61(10): 16-25. doi: 10.16080/j.issn1671-833x.2018.10.016

    WANG X M, SU Y D, WU B, et al. Application for additive manufacturing of lattice materials on integrated aircraft structures and functions[J]. Aviation Manufacturing Technology, 2018, 61(10): 16-25(in Chinese). doi: 10.16080/j.issn1671-833x.2018.10.016
    [5] 郑云. 中空夹芯复合材料在轨道交通内装上的应用[J]. 玻璃纤维, 2013(4): 19-23. doi: 10.3969/j.issn.1005-6262.2013.04.006

    ZHENG Y. Application of 3D sandwich composite in interiors of rail vehicles[J]. Fiber Glass, 2013(4): 19-23(in Chinese). doi: 10.3969/j.issn.1005-6262.2013.04.006
    [6] WANG B, ZHANG G Q, WANG S X, et al. High velocity impact response of composite lattice core sandwich structures[J]. Applied Composite Materials, 2014, 21(2): 377-389. doi: 10.1007/s10443-013-9345-4
    [7] 励争, 周洁, 李冰, 等. 轻质点阵夹芯板热屈曲的实验研究[J]. 实验力学, 2018, 33(2): 167-174. doi: 10.7520/1001-4888-17-078

    LI Z, ZHOU J, LI B, et al. Experimental study of thermal buckling of lightweight lattice sandwich panel[J]. Journal of Experimental Mechanics, 2018, 33(2): 167-174(in Chinese). doi: 10.7520/1001-4888-17-078
    [8] LOU J, WU L, MA L, et al. Effects of local damage on vibration characteristics of composite pyramidal truss core sandwich structure [J]. Composites Part B: Engineering, 2014, 62: 73-87.
    [9] MCELROY M, LEONE F, RATCLIFFE J, et al. Simulation of delamination-migration and core crushing in a CFRP sandwich structure [J]. Composites, Part A: Applied Science and Manufacturing, 2015, 79: 192-202.
    [10] YUAN W, SONG H, LU L, et al. Effect of local damages on the buckling behaviour of pyramidal truss core sandwich panels[J]. Composite Structures, 2016, 149: 271-278.
    [11] 袁梅, 商富凯, 董韶鹏. 基于经验小波变换的复合材料板声发射源定位[J]. 北京航空航天大学学报, 2018, 44(7): 1395-1401. doi: 10.13700/j.bh.1001-5965.2017.0527

    YUAN M, SHANG F K, DONG S P. Acoustic emission source location for composite plate based on empirical wavelet transform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1395-1401(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0527
    [12] 曾康洋. 浅谈射线检测技术在无损检测中的应用[J]. 城市建设理论研究(电子版), 2015, 5(26): 2377.

    ZENG K Y. On the application of ray detection technology in nondestructive testing[J]. Theoretical Research on Urban Construction (Electronic Version), 2015, 5(26): 2377(in Chinese).
    [13] 王树志, 刘广华, 贾玉军, 等. 表面状态对铝合金铸件荧光渗透检测的影响[J]. 无损检测, 2016, 38(2): 48-51. doi: 10.11973/wsjc201602012

    WANG S Z, LIU G H, JIA Y J, et al. Influence of surface state on fluorescent penetrant inspection of aluminium alloy casting[J]. Nondestructive Testing, 2016, 38(2): 48-51(in Chinese). doi: 10.11973/wsjc201602012
    [14] BALASUBRAMANIAM K, SIKDAR S, FIBOREK P, et al. Ultrasonic guided wave signal based nondestructive testing of a bonded composite structure using piezoelectric transducers[J]. Signals, 2021, 2(1): 13-24. doi: 10.3390/signals2010002
    [15] PARK S M, KWAK Y, LEE J, et al. Nondestructive spot weld quality evaluation by measurement of structural vibration transfer through joined panels[J]. Journal of Nondestructive Evaluation, 2019, 38: 71. doi: 10.1007/s10921-019-0610-9
    [16] SOKOLINSKY V S, BREMEN H, LESKO J, et al. Higher-order free vibrations of sandwich beams with a locally damaged core[J]. International Journal of Solids & Structures, 2004, 41(22-23): 6529-6547.
    [17] LU L L, SONG H W, YUAN W, et al. Baseline-free damage identification of metallic sandwich panels with truss core based on vibration characteristics[J]. Structural Health Monitoring, 2017, 16(1): 24-38. doi: 10.1177/1475921716660055
    [18] LI B, LI Z, ZHOU J, et al. Damage localization in composite lattice truss core sandwich structures based on vibration characteristics[J]. Composite Structures, 2015, 126: 34-51. doi: 10.1016/j.compstruct.2015.02.046
    [19] LU L L, LE J, SONG H, et al. Damage detection of sandwich panels with truss core based on time domain dynamic responses[J]. Composite Structures, 2019, 211: 443-454.
    [20] 孙建刚, 赵晓宇, 吴有生, 等. 针对一型深水结构物的水下声场计算与试验研究[J]. 船舶力学, 2018, 22(8): 1011-1019.

    SUN J G, ZHAO X Y, WU Y S, et al. Numerical analysis and acoustic test of sound field characteristics for some type of deepwater structure[J]. Journal of Ship Mechanics, 2018, 22(8): 1011-1019(in Chinese).
  • 加载中
图(8)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 录用日期:  2021-07-16
  • 刊出日期:  2021-09-06

目录

    /

    返回文章
    返回
    常见问答