留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机空间网络的无人机集群协同对抗模型

王尔申 郭靖 宏晨 任虹帆 陈艾东 商新娜

王尔申,郭靖,宏晨,等. 基于随机空间网络的无人机集群协同对抗模型[J]. 北京航空航天大学学报,2023,49(1):10-16 doi: 10.13700/j.bh.1001-5965.2021.0206
引用本文: 王尔申,郭靖,宏晨,等. 基于随机空间网络的无人机集群协同对抗模型[J]. 北京航空航天大学学报,2023,49(1):10-16 doi: 10.13700/j.bh.1001-5965.2021.0206
WANG E S,GUO J,HONG C,et al. Cooperative confrontation model of UAV swarm with random spatial networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):10-16 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0206
Citation: WANG E S,GUO J,HONG C,et al. Cooperative confrontation model of UAV swarm with random spatial networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):10-16 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0206

基于随机空间网络的无人机集群协同对抗模型

doi: 10.13700/j.bh.1001-5965.2021.0206
基金项目: 国家重点研发计划(2018AAA0100804);中国民航大学民航航班广域监视与安全管控技术重点实验室开放基金(202105);辽宁省“兴辽英才计划”(XLYC1907022);北京市教育委员会科技计划(KM201811417005,KM201911417010);辽宁省应用基础研究计划(2022020502-JH2/1013);沈阳市科技计划(22-322-3-34)
详细信息
    通讯作者:

    E-mail:hchchina@sina.com

  • 中图分类号: V279+.2;TN711.5;TP391.9

Cooperative confrontation model of UAV swarm with random spatial networks

Funds: National Key R & D Program of China (2018AAA0100804); Open Fund of Key Laboratory of Civil Aviation Flights Wide Area Surveillance and Safety Control Technology of Civil Aviation University of China (202105); Liaoning Revitalization Talents Program (XLYC1907022); Beijing Education Commission Science and Technology Project (KM201811417005, KM201911417010); Applied Basic Research Programs of Liaoning Province (2022020502-JH2/1013); Shenyang Science and Technology Program (22-322-3-34)
More Information
  • 摘要:

    无人机集群协同对抗是未来作战的发展方向,为了突出集群强进攻、难防御、高灵活的优势,对高维度、强动态、非线性无人机集群的协同对抗的复杂系统进行有效建模是一个重要的研究方向。应用复杂空间网络理论构建了对抗双方的协同网络、对抗网络及协同对抗网络,模拟无人机集群的协同侦察场景,分别在二维和三维空间中建立了无人机集群协同对抗模型;分析了影响杀伤率的因素,提出了杀伤率与空间距离的解析式;通过网络级联效应分析了无人机集群协同网络的鲁棒性,验证了所提无人机集群协同对抗模型的有效性,为无人机集群协同对抗的建模提供了一种新思路。

     

  • 图 1  对抗场景示意图

    Figure 1.  Diagram of confrontation scenario

    图 2  网络结构

    Figure 2.  Network structure

    图 3  二维空间中不同红方杀伤率下网络失效大小与时间步的关系

    Figure 3.  Relationship between failed size and time step under different hit rates of red UAVs in 2D

    图 4  二维空间中不同蓝方容量上限下网络失效大小与时间步的关系

    Figure 4.  Relationship between failed size and time step under different capacity-limitation of blue UAVs in 2D

    图 5  二维与三维空间中不同红方杀伤率下网络失效大小对比

    Figure 5.  Comparison of failed size under different hit rates of red UAVs in 2D and 3D

    图 6  三维空间中不同红方杀伤率下网络失效大小与时间步的关系

    Figure 6.  Relationship between failed size and time step under different hit rates of red UAVs in 3D

    图 7  三维空间中不同蓝方容量上限下网络失效大小与时间步的关系

    Figure 7.  Relationship between failed size and time step under different capacity-limitation of blue UAVs in 3D

    图 8  二维与三维空间中不同蓝方容量上限下网络失效大小对比

    Figure 8.  Comparison of failed size under different capacity-limitation of blue UAVs in 2D and 3D

    表  1  不同红方杀伤率下的级联效果

    Table  1.   Cascading effects under different hit rates of red UAVs

    红方
    杀伤率
    三维场景二维场景
    被击落
    无人机架数
    网络
    最终S
    被击落
    无人机架数
    网络
    最终S
    0.28.040.449.800.546
    0.414.560.9020.040.95
    0.621.680.9930.641.00
    0.829.481.0039.321.00
    下载: 导出CSV

    表  2  不同蓝方容量上限下的级联效果

    Table  2.   Cascading effects under different capacity-limitation of blue UAVs

    蓝方容量上限三维场景二维场景
    被击落
    无人机架数
    网络
    最终S
    被击落
    无人机架数
    网络
    最终S
    619.681.0025.041.00
    818.200.8326.681.00
    1018.600.5424.560.86
    1219.480.4225.160.64
    下载: 导出CSV
  • [1] ALISTAIR D. Modeling robot swarms using agent-based simulation[D]. Monterey: Naval Postgraduate School, 2002.
    [2] GRASSÉ P P. Nest reconstruction and interindividual coordination in bellicositermes natalensis and cubitermes sp. the theory of stigmergy: An attempt to interpret the behaviour of builder termites[J]. Insectes Sociaux, 1956, 6: 41-80.
    [3] LIN Z J, HONG-TAO L H. Consensus based on learning game theory with a UAV rendezvous application[J]. Chinese Journal of Aeronautics, 2015, 28(1): 191-199. doi: 10.1016/j.cja.2014.12.009
    [4] 刘鑫, 杨宵鹏, 刘雨帆, 等. 基于GA-OCPA学习系统的无人机路径规划方法[J]. 航空学报, 2017, 38(11): 287-297. doi: 10.7527/S1000-6893.2017.321275

    LIU X, YANG X P, LIU Y F, et al. UAV path planning method based on GA-OCPA learning system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 287-297(in Chinese). doi: 10.7527/S1000-6893.2017.321275
    [5] 朱黔, 许诺, 黄蓓, 等. 基于角色切换策略的多无人机协同区域搜索[J]. 北京航空航天大学学报, 2021, 47(5): 928-938. doi: 10.13700/j.bh.1001-5965.2020.0070

    ZHU Q, XU N, HUANG B, et al. Multi-UAV collaborative area search based on role-switching strategies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 928-938(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0070
    [6] 曾佳, 申功璋, 杨凌宇. 无人机在线协同航迹规划时序问题[J]. 南京航空航天大学学报, 2009, 41(3): 334-338. doi: 10.3969/j.issn.1005-2615.2009.03.010

    ZENG J, SHEN G Z, YANG L Y. Unmanned online collaborative flight path planning timing issues[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41(3): 334-338(in Chinese). doi: 10.3969/j.issn.1005-2615.2009.03.010
    [7] LI H, LONG T, XU G T, et al. Coupling-degree-based heuristic prioritized planning method for UAV swarm path generation[C]// 2019 Chinese Automation Congress (CAC). Piscataway: IEEE Press, 2019: 3636-3641.
    [8] 蒋进. 无人机集群动态避撞算法研究[D]. 南京: 南京航空航天大学, 2019.

    JIANG J. UAV swarm dynamic collision avoidance algorithm research[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese).
    [9] 牛轶峰, 凌黎华. 无人机规避或跟踪空中目标的自适应运动导引方法[J]. 国防科技大学学报, 2017, 39(4): 116-124. doi: 10.11887/j.cn.201704018

    NIU Y F, LIN L H. Adaptive motion guidance methods for UAV evasion or tracking of aerial targets[J]. Journal of National University of Defense Technology, 2017, 39(4): 116-124(in Chinese). doi: 10.11887/j.cn.201704018
    [10] WANG Y, BAI P, LIANG X, et al. Reconnaissance mission conducted by UAV swarms based on distributed PSO path planning algorithms[J]. IEEE Access, 2019, 7: 105086-105099. doi: 10.1109/ACCESS.2019.2932008
    [11] MANJUNATHA K A, HU F. Deep Q-learning-based node positioning for throughput-optimal communications in dynamic UAV swarm network[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(3): 554-566. doi: 10.1109/TCCN.2019.2907520
    [12] LAKAS A, BELKACEM A N, HASSANI S A. An adaptive multi-clustered scheme for autonomous UAV swarms[C]//2020 International Wireless Communications and Mobile Computing (IWCMC). Piscataway: IEEE Press, 2020: 19855085.
    [13] 谢剑. 基于微分博弈论的多无人机追逃协同机动技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    XIE J. Differential game theory for multi-UAV pursuit maneuvers technology based on collaborative research[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).
    [14] 王晓光, 章卫国, 陈伟. 无人机编队超视距空战决策及作战仿真[J]. 控制与决策, 2015, 30(2): 328-334. doi: 10.13195/j.kzyjc.2013.1751

    WANG X G, ZHANG W G, CHEN W. BVR air combat decision making and simulation for UAV formation[J]. Control and Decision, 2015, 30(2): 328-334(in Chinese). doi: 10.13195/j.kzyjc.2013.1751
    [15] 周文卿, 朱纪洪, 匡敏驰. 一种基于群体智能的无人空战系统[J]. 中国科学:信息科学, 2020, 50(3): 363-374. doi: 10.1360/SSI-2019-0196

    ZHOU W Q, ZHU J H, KUANG M C. An unmanned air combat system based on swarm intelligence[J]. Scientia Sinica: Informationis, 2020, 50(3): 363-374(in Chinese). doi: 10.1360/SSI-2019-0196
    [16] 冉惟之. 基于群体智能的无人机集群协同对抗系统的设计与实现[D]. 成都: 电子科技大学, 2020.

    RAN W Z. Design and implementation of cooperative adversarial system based on swarm intelligence for unmanned aerial vehicles[D]. Chengdu: University of Electronic Science and Technology of China, 2020(in Chinese).
    [17] 陈灿, 莫雳, 郑多, 等. 非对称机动能力多无人机智能协同攻防对抗[J]. 航空学报, 2020, 41(12): 342-354. doi: 10.7527/S1000-6893.2020.24152

    CHEN C, MO L, ZHENG D, et al. Cooperative attack-defense game of multiple UAVs with asymmetric maneuverability[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 342-354(in Chinese). doi: 10.7527/S1000-6893.2020.24152
    [18] CRUCITTI P, LATORA V, PORTA S. Centrality measures in spatial networks of urban streets[J]. Physical Review E, 2006, 73(3): 036125. doi: 10.1103/PhysRevE.73.036125
    [19] BARTHELEMY M. Morphogenesis of spatial network[M]. Berlin: Springer, 2018: 177-196.
    [20] CRUZ J B, SIMAAN M A, GACIC A, et al. Game-theoretic modeling and control of a military air operation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4): 1393-1405. doi: 10.1109/7.976974
    [21] COBB B J. Adaptive discrete event simulation for analysis of harpy swarm attack[D]. Monterey: Naval Postgraduate School, 2011: 1-59.
    [22] ALBERT R, ALBERT I, NAKARADO G L. Structural vulnerability of the North American power grid[J]. Physical Review E, 2004, 69(2): 025103.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  2
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 录用日期:  2021-06-04
  • 网络出版日期:  2023-01-16
  • 刊出日期:  2021-09-01

目录

    /

    返回文章
    返回
    常见问答