留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池热失控气体燃烧对热失控传播影响的量化方法

张青松 刘添添 赵子恒

张青松,刘添添,赵子恒. 锂离子电池热失控气体燃烧对热失控传播影响的量化方法[J]. 北京航空航天大学学报,2023,49(1):17-22 doi: 10.13700/j.bh.1001-5965.2021.0212
引用本文: 张青松,刘添添,赵子恒. 锂离子电池热失控气体燃烧对热失控传播影响的量化方法[J]. 北京航空航天大学学报,2023,49(1):17-22 doi: 10.13700/j.bh.1001-5965.2021.0212
ZHANG Q S,LIU T T,ZHAO Z H. Quantitative method of influence of thermal runaway gas combustion on thermal runaway propagation of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):17-22 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0212
Citation: ZHANG Q S,LIU T T,ZHAO Z H. Quantitative method of influence of thermal runaway gas combustion on thermal runaway propagation of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):17-22 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0212

锂离子电池热失控气体燃烧对热失控传播影响的量化方法

doi: 10.13700/j.bh.1001-5965.2021.0212
基金项目: 国家自然科学基金-民航联合基金重点支持项目(U2033204)
详细信息
    通讯作者:

    E-mail:nkzqsong@126.com

  • 中图分类号: X949

Quantitative method of influence of thermal runaway gas combustion on thermal runaway propagation of lithium-ion battery

Funds: Key Program of the Joint Fund for Civil Aviation Research with National Natural Science Foundation of China (U2033204)
More Information
  • 摘要:

    为量化锂离子电池热失控过程产生热失控气体对热失控传播的影响,基于能量守恒方程和铜基电池量热法,提出了一种计算热失控气体燃烧对热失控传播贡献占比的方法。选取商用18650型电池,利用自主设计搭建的热失控气体释能测算实验平台获取计算所需参数。实验结果表明:第1节电池热失控气体燃烧释放的能量在第2节电池热失控所需能量中占比达到5.42%,使第2节电池自产热增加了42%,热失控时间提前了29%。研究结果有助于进一步探索热失控传播过程中的能量传递效率,为单元层级和系统层级的电池安全设计提供理论支持。

     

  • 图 1  热失控气体释能测算实验平台结构示意图

    Figure 1.  Structure diagram of experimental platform for measuring energy release of thermal runaway gas

    图 2  空气环境下电池实验温度、压力、质量变化

    Figure 2.  Temperature, pressure and mass change of battery experiments under air environment

    图 3  空气环境下铜柱替代实验温度、压力变化

    Figure 3.  Temperature and pressure change of copper column replacement experiment under air environment

    图 4  氮气环境下电池实验温度、压力变化

    Figure 4.  Temperature and pressure change of battery experiment under nitrogen environment

    表  1  锂离子电池参数

    Table  1.   Parameters of lithium-ion battery

    参数额定容量/mAh电压/V内阻/mΩ荷电状态SOC/%初始质量/g
    数值22004.17±0.0130±510041±0.5
    下载: 导出CSV

    表  2  空气环境下传递能量测量和计算结果

    Table  2.   Measurement and calculation results of energy transfer in air environment

    实验类型t1
    /s
    mB,1 (t1)/gmB,2 (t1)/g$\displaystyle\int_{ {t_1} }^{ {t_2} } \left({P_{ {\text{B,} }1} } + {P_{ {\text{B,} }2} }\right){\text{d} }t$/J$\displaystyle\int_{{t_1}}^{{t_2}} {{P_{{\text{B,1}}}}{\text{d}}t} $/J
    电池-电池235326.62926.74019134.6
    电池-铜柱250426.61717854.5
    下载: 导出CSV

    表  3  氮气环境下传递能量测量和计算结果

    Table  3.   Measurement and calculation results of transfer energy in nitrogen environment

    实验类型t1
    /s
    mB,1 (t1)/gmB,2 (t1)/g$\displaystyle\int_{ {t_1} }^{ {t_2} } \left( {P'_{ {\text{B,1} } } } + {P'_{ {\text{B,2} } } }\right){\text{d} }t$/J$\displaystyle\int_{ {t_1} }^{ {t_2} } { {P'_{ {\text{B,1} } } }{\text{d} }t}$/J
    电池-电池255726.52526.73017556.3
    电池-铜柱224226.50216657.2
    下载: 导出CSV

    表  4  2号电池自产热及接收能量计算

    Table  4.   Calculation of self generated heat and received energy of No.2 battery

    实验
    条件
    2号电池
    自产热/J
    2号电池升温
    所需热量/J
    2号电池接收
    外界热量/J
    传递到2号电池的热
    失控气体释能大小/J
    空气环境1280.16384.55104.4346.1
    氮气环境899.15657.44758.3
    下载: 导出CSV
  • [1] 芮新宇, 冯旭宁, 韩雪冰, 等. 锂离子电池热失控蔓延问题研究综述[J]. 电池工业, 2020, 24(4): 193-201. doi: 10.3969/j.issn.1008-7923.2020.04.005

    RUI X Y, FENG X N, HAN X B, et al. Review on the thermal runaway propagation of lithium-ion batteries[J]. Chinese Battery Industry, 2020, 24(4): 193-201(in Chinese). doi: 10.3969/j.issn.1008-7923.2020.04.005
    [2] 张青松, 罗星娜, 程相静, 等. 基于锂离子电池温降指数的细水雾添加剂筛选方法[J]. 北京航空航天大学学报, 2020, 46(6): 1073-1079. doi: 10.13700/j.bh.1001-5965.2019.0362

    ZHANG Q S, LUO X N, CHENG X J, et al. Method for screening fine water mist additive based on temperature drop index of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1073-1079(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0362
    [3] 张磊, 张春颖, 黄昊, 等. 三元锂电池过充诱导燃烧特性的试验研究[J]. 消防科学与技术, 2021, 40(2): 157-159. doi: 10.3969/j.issn.1009-0029.2021.02.001

    ZHANG L, ZHANG C Y, HUANG H, et al. Experimental study on the combustion characteristics of ternary lithium battery by overcharge[J]. Fire Science and Technology, 2021, 40(2): 157-159(in Chinese). doi: 10.3969/j.issn.1009-0029.2021.02.001
    [4] 张磊, 黄昊, 张永丰, 等. 锂电池穿刺燃烧特性及其抑制技术研究[J]. 消防科学与技术, 2020, 39(4): 526-528. doi: 10.3969/j.issn.1009-0029.2020.04.028

    ZHANG L, HUANG H, ZHANG Y F, et al. Study on combustion characteristics and suppression technology of lithium batteries by puncture[J]. Fire Science and Technology, 2020, 39(4): 526-528(in Chinese). doi: 10.3969/j.issn.1009-0029.2020.04.028
    [5] 张青松, 曹文杰, 罗星娜, 等. 基于多米诺效应的锂离子电池热释放速率分析方法[J]. 北京航空航天大学学报, 2017, 43(5): 902-907. doi: 10.13700/j.bh.1001-5965.2016.0383

    ZHANG Q S, CAO W J, LUO X N, et al. Analysis method of heat release rate of lithium-ion battery based on Domino effect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 902-907(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0383
    [6] FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. doi: 10.1016/j.joule.2020.02.010
    [7] ROTH E P, DOUGHTY D H, FRANKLIN J, et al. DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders[J]. Journal of Power Sources, 2004, 134(2): 222-234. doi: 10.1016/j.jpowsour.2004.03.074
    [8] JHU C Y, WANG Y W, SHU C M, et al. Thermal explosion hazards on 18650 lithium-ion batteries with a VSP2 adiabatic calorimeter[J]. Journal of Hazardous Materials, 2011, 192(1): 99-107.
    [9] JHU C Y, WANG Y W, WEN C Y, et al. Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries[J]. Journal of Thermal Analysis and Calorimetry, 2011, 106(1): 159-163. doi: 10.1007/s10973-011-1452-6
    [10] JHU C Y, WANG Y W, WEN C Y, et al. Thermal runaway potential of LiCoO2 and Li (Ni1/3Co1/3Mn1/3) O2 batteries determined with adiabatic calorimetry methodology[J]. Applied Energy, 2012, 100: 127-131.
    [11] WEN C Y, JHU C Y, WANG Y W, et al. Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2[J]. Journal of Thermal Analysis and Calorimetry, 2012, 109(3): 1297-1302. doi: 10.1007/s10973-012-2573-2
    [12] LIU X, STOLIAROV S I, DENLINGER M, et al. Comprehensive calorimetry of the thermally-induced failure of a lithium-ion battery[J]. Journal of Power Sources, 2015, 280: 516-525. doi: 10.1016/j.jpowsour.2015.01.125
    [13] LIU X, WU Z, STOLIAROV S I, et al. Heat release during thermally-induced failure of a lithium-ion battery: Impact of cathode composition[J]. Fire Safety Journal, 2016, 85: 10-22. doi: 10.1016/j.firesaf.2016.08.001
    [14] SAID A O, LEE C, STOLIAROV S I, et al. Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium-ion cell arrays[J]. Applied Energy, 2019, 248: 415-428. doi: 10.1016/j.apenergy.2019.04.141
    [15] SAID A O, LEE C, STOLIAROV S I, et al. Experimental investigation of cascading failure in 18650 lithium-ion cell arrays: Impact of cathode chemistry[J]. Journal of Power Sources, 2020, 446: 227347.
    [16] FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium-ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273. doi: 10.1016/j.jpowsour.2014.11.017
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  3
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 录用日期:  2021-05-23
  • 网络出版日期:  2023-01-16
  • 刊出日期:  2021-07-16

目录

    /

    返回文章
    返回
    常见问答