留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轮缘密封影响下的动叶通道内非定常流动研究

何振鹏 周佳星 辛佳 刘明远 黎柏春 张桂昌

何振鹏,周佳星,辛佳,等. 轮缘密封影响下的动叶通道内非定常流动研究[J]. 北京航空航天大学学报,2023,49(2):273-283 doi: 10.13700/j.bh.1001-5965.2021.0223
引用本文: 何振鹏,周佳星,辛佳,等. 轮缘密封影响下的动叶通道内非定常流动研究[J]. 北京航空航天大学学报,2023,49(2):273-283 doi: 10.13700/j.bh.1001-5965.2021.0223
HE Z P,ZHOU J X,XIN J,et al. Unsteady flow characteristics of turbine rotor passage under rim seal effect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):273-283 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0223
Citation: HE Z P,ZHOU J X,XIN J,et al. Unsteady flow characteristics of turbine rotor passage under rim seal effect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):273-283 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0223

轮缘密封影响下的动叶通道内非定常流动研究

doi: 10.13700/j.bh.1001-5965.2021.0223
基金项目: 天津市教委科研计划(2018KJ240);中国民航大学研究生科研创新项目(10502728);国家自然科学基金(U1833108);2020年中国民航大学虚拟仿真实验室建设项目(XF2020006)
详细信息
    通讯作者:

    E-mail:bc_li@cauc.edu.cn

  • 中图分类号: V231.3

Unsteady flow characteristics of turbine rotor passage under rim seal effect

Funds: Tianjin Education Commission Scientific Research Program (2018KJ240); Civil Aviation University of China Postgraduate Research and Innovation Project (10502728); National Natural Science Foundation of China (U1833108); 2020 Virtual Simulation Laboratory Construction Project of Civil Aviation University of China (XF2020006)
More Information
  • 摘要:

    为了研究涡轮转静盘腔间轮缘封严结构对下游动叶通道内流动的影响,对无封严结构、无封严气流及采用不同封严流量时涡轮动叶通道内流场分布和气动损失进行了数值模拟。结果表明:封严腔出口位置气流受静叶与动叶相对位置变化的影响呈现较强的非定常特性,变化与动叶运动周期保持一致。动叶入口位置非定常波动受到封严气流与前缘势场共同作用,封严气流引起周向、径向速度变化的同时也造成了强烈的非定常效应。动叶通道内封严气流引起的端区气流偏转改变了前缘马蹄涡滞止点位置,增强了马蹄涡压力面分支,动叶吸力面一侧剪切诱导涡改变了轮毂通道涡的形成机制和吸力面侧相对低压区的位置。

     

  • 图 1  带有前后腔的1.5级涡轮子午面

    Figure 1.  Meridian channel of 1.5-stage turbine with front and aft seal cavity

    图 2  1.5级涡轮计算网格

    Figure 2.  Computation mesh of 1.5-stage turbine

    图 3  监测点静压变化

    Figure 3.  Static pressure changes at monitoring points

    图 4  动叶出口周向质量平均相对流动角

    Figure 4.  circumferential mass-averaged relative flow angle at rotor exit

    图 5  IR=0.9%时相对总压系数云图

    Figure 5.  Contour of relative total pressure coefficient when IR=0.9%

    图 6  封严腔出口径向速度与总压云图

    Figure 6.  Contours of radial velocity and total pressure at seal cavity exit

    图 7  动叶进口相对总压Tr周期内均方差分布

    Figure 7.  Relative total pressure RMS in Tr cycle at rotor inlet

    图 8  动叶进口时均径向速度径向分布

    Figure 8.  Radial distribution of time-averaged radial velocity at rotor inlet

    图 9  动叶进口时均径向速度均方差径向分布

    Figure 9.  Radial distribution of time-averaged radial velocity RMS at rotor inlet

    图 10  动叶入口周向质量平均相对流动角

    Figure 10.  Radial distribution of circumferential mass-averaged relative flow angle at rotor inlet

    图 11  动叶轮毂位置相对总压云图

    Figure 11.  Relative total pressure contours at rotor hub

    图 12  动叶通道端区三维流线分布

    Figure 12.  3D streamline at rotor passage endwall

    图 13  动叶前缘三维旋涡结构示意图

    Figure 13.  Schematic diagram of 3D vortex structure at the leading edge of blade

    图 14  动叶通道轴向涡量云图

    Figure 14.  Axial vorticity contours of blade passage

    图 15  动叶10%叶高位置Tr周期内各时刻熵增云图

    Figure 15.  Contour of entropy increase at every moment of Tr cycle at 10% blade height position

    图 16  动叶吸力面剪切应力与极限流线图

    Figure 16.  Contours of wall shear stress and limited streamlines near rotor suction side

    图 17  动叶表面静压系数分布

    Figure 17.  Static pressure coefficient distribution on blade surface

    图 18  动叶出口熵增云图

    Figure 18.  Entropy increase contours at rotor outlet

    图 19  动叶出口周向质量平均熵增径向分布

    Figure 19.  Radial distribution of entropy increase at the blade outlet

  • [1] REGINA K, KALFAS A I, ABHARI R S. Experimental investigation of purge flow effects on a high pressure turbine stage[J]. Journal of Turbomachinery, 2015, 137(4): 0410061-0410069.
    [2] ZLATINOV M B, TAN V S, MONTGOMERY M, et al. Turbine hub and shroud sealing flow loss mechanisms[J]. Journal of Turboimachinery, 2012, 134(11): 061027.
    [3] SCHREWE S, WERSCHNIK H, SCHIFFER H. Experimental analysis of the interaction between rim seal and main annulus flow in a low pressure two stage axial turbine[J]. Journal of Turbomachinery, 2013, 135(5): 0510031-0510039.
    [4] POPOVIC I, HODSON H P. Improving turbine stage efficiency and sealing effectiveness through modifications of the rim seal geometry[J]. Journal of Turbomachinery, 2013, 135(6): 061016.
    [5] POPOVIC I, HODSON H P, JANKE E, et al. The effects of unsteadiness and compressibility on the interaction between hub leakage and mainstream flows in high-pressure turbines[J]. Journal of Turbomachinery, 2013, 135(6): 061015.
    [6] POPOVIC I, HODSON H P. The effects of a parametric variation of the rim seal geometry on the interaction between hub leakage and mainstream flows in high pressure Turbines[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(11): 112501.
    [7] POPOVIC I, HODSON H P. Aerothermal impact of the interaction between hub leakage and mainstream flows in highly-loaded high pressure turbine blades[J]. Journal of Turbomachinery, 2013, 135(6): 061014.
    [8] MONGE-CONCEPCION I, BERDANIER R A, BARRINGER M D, et al. Evaluating the effect of vane trailing edge flow on turbine rim sealing[J]. Journal of Turbomachinery, 2020, 142(8): 081001.
    [9] SCHREINER B D J, WILSON M, LI Y S, et al. Effect of purge on the secondary flow-field of a gas turbine blade-row[J]. Journal of Turbomachinery, 2020, 142(10): 101006.
    [10] 周杨, 牛为民, 邹正平, 等. 轮毂封严气体对高压涡轮二次流动的影响[J]. 推进技术, 2006, 27(6): 515-520. doi: 10.3321/j.issn:1001-4055.2006.06.009

    ZHOU Y, NIU W M, ZOU Z P, et al. Effects of coolant injection from rim seals on secondary flow in a high-pressure turbine[J]. Journal of Propulsion Technology, 2006, 27(6): 515-520(in Chinese). doi: 10.3321/j.issn:1001-4055.2006.06.009
    [11] 贾惟. 轮毂封严与高负荷涡轮端区流动的非定常相互作用[J]. 推进技术, 2017, 38(12): 2674-2685. doi: 10.13675/j.cnki.tjjs.2017.12.005

    JIA W. Unsteady interaction between purge flow and endwall flow in highly-loaded turbines[J]. Journal of Propulsion Technology, 2017, 38(12): 2674-2685(in Chinese). doi: 10.13675/j.cnki.tjjs.2017.12.005
    [12] 贾惟. 轮毂封严对涡轮端区流动影响的数值研究[J]. 热能动力工程, 2018, 33(8): 20-29. doi: 10.16146/j.cnki.rndlgc.2018.08.004

    JIA W. Numerical Investigation of influence of rim seal purge flow on turbine endwall flows[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(8): 20-29(in Chinese). doi: 10.16146/j.cnki.rndlgc.2018.08.004
    [13] JIA W, LIU H X. Numerical investigation of the effect of rim seal on turbine aerodynamic design parameters and end wall flows in low-aspect ratio turbine[J]. Computers & Fluids, 2013, 74: 114-125.
    [14] 吴康, 任静, 蒋洪德, 等. 整级透平中转静轮缘封严问题研究. Part Ⅰ: 封严与入侵[J]. 工程热物理学报, 2014, 35(5): 873-877.

    WU K, REN J, JIANG H D, et al. Rotor-stator rim seal analysis in one stage gas turbine. Part Ⅰ: Ingestion and seal[J]. Journal of Engineering Thermophysics, 2014, 35(5): 873-877(in Chinese).
    [15] 吴康, 任静, 蒋洪德. 整级透平中转静轮缘封严问题研究. Part Ⅱ: 不同封严结构的特性[J]. 工程热物理学报, 2015, 36(3): 496-500.

    WU K, REN J, JIANG H D. Rotor-stator rim seal analysis in one stage gas turbine. Part Ⅱ: Characteristic of different seal structure[J]. Journal of Engineering Thermophysics, 2015, 36(3): 496-500(in Chinese).
    [16] 程舒娴, 李军, 李志刚, 等. 轮缘密封整周模型流动与封严特性数值研究[J]. 工程热物理学报, 2021, 42(2): 370-376.

    CHENG S X, LI J, LI Z G, et al. Numerical investigations on the flow and sealing effectiveness of a turbine rim seal model with whole cavity[J]. Journal of Engineering Thermophysics, 2021, 42(2): 370-376(in Chinese).
    [17] BEHR T. Control of rotor tip leakage and secondary flow by casing air injection in unshrouded axial turbines[D]. Dresden: Dresden University of Technology, 2007: 73-87.
    [18] SCHUEPBACH P. Influence of rim seal purge flow on performance of an endwall profiled axial turbine[D]. Swiss: Swiss Federal Institute of Technology, 2009: 50-54.
    [19] 张晶辉, 马宏伟. 轮缘封严气体对涡轮转子性能影响的非定常数值研究[J]. 推进技术, 2014, 35(4): 470-478. doi: 10.13675/j.cnki.tjjs.2014.03.007

    ZHANG J H, MA H W. Unsteady numerical investigation for effects of rim sealing flow on performance of a turbine rotor[J]. Journal of Propulsion Technology, 2014, 35(4): 470-478(in Chinese). doi: 10.13675/j.cnki.tjjs.2014.03.007
  • 加载中
图(19)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  84
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-09-03
  • 整期出版日期:  2023-02-28

目录

    /

    返回文章
    返回
    常见问答