留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲压缩在钢板腐蚀电磁超声SH导波检测中的应用

石文泽 黄祺凯 卢超 邱发生 陈尧 陈果

石文泽,黄祺凯,卢超,等. 脉冲压缩在钢板腐蚀电磁超声SH导波检测中的应用[J]. 北京航空航天大学学报,2023,49(2):324-334 doi: 10.13700/j.bh.1001-5965.2021.0229
引用本文: 石文泽,黄祺凯,卢超,等. 脉冲压缩在钢板腐蚀电磁超声SH导波检测中的应用[J]. 北京航空航天大学学报,2023,49(2):324-334 doi: 10.13700/j.bh.1001-5965.2021.0229
SHI W Z,HUANG Q K,LU C,et al. Application of pulse compression technique in steel plate corrosion detection with SH guided wave EMATs[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):324-334 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0229
Citation: SHI W Z,HUANG Q K,LU C,et al. Application of pulse compression technique in steel plate corrosion detection with SH guided wave EMATs[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):324-334 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0229

脉冲压缩在钢板腐蚀电磁超声SH导波检测中的应用

doi: 10.13700/j.bh.1001-5965.2021.0229
基金项目: 国家自然科学基金(52065049,12064001,51705231,51705232);江西省自然科学基金(20192ACBL20052,20181BAB216020)
详细信息
    作者简介:

    石文泽等:编码压缩在钢板电磁超声SH导波检测中的应用 11

    通讯作者:

    E-mail:luchaoniat@163.com

  • 中图分类号: TH878;TB552

Application of pulse compression technique in steel plate corrosion detection with SH guided wave EMATs

Funds: National Natural Science Foundation of China (52065049,12064001,51705231,51705232); Natural Science Foundation of Jiangxi, China (20192ACBL20052,20181BAB216020)
More Information
  • 摘要:

    将Barker码脉冲压缩技术应用于水平剪切(SH)导波电磁超声换能器( EMAT),对提高在役钢板腐蚀检测回波的信噪比(SNR)和空间分辨率,以及实现大范围在线快速扫查具有重要的工程应用价值。建立基于Barker码信号激励的钢板SH导波传播有限元模型,结合实验分析与数值计算,分析了Barker码序列长度、码元长度、EMAT设计参数、提离等因素对脉冲压缩后缺陷回波的信噪比和波包宽度的影响,并与传统单一频率脉冲串激励方式进行对比实验。结果表明:与单一频率脉冲串激励方式相比,采用Barker码脉冲压缩技术,可以将缺陷波的SNR提高5.8 dB;当EMAT提离为3.0 mm时,经过脉冲压缩后的缺陷回波SNR>8.7 dB,而采用单一频率脉冲串激励方式对应的SNR接近于0 dB;当Barker码信号序列长度为13位、码元长度为15 μs时,能检测深度为1 mm、直径为20 mm的圆孔,且SNR>25.4 dB。

     

  • 图 1  基于洛伦兹力的PPM-EMAT换能机理

    Figure 1.  PPM-EMAT conversion mechanism based on Lorentz force

    图 2  SH导波传播有限元模型

    Figure 2.  Finite element model of SH guided wave propagation

    图 3  SH导波在钢板中的频散曲线

    Figure 3.  Frequency dispersion curve of SH guided wave propagation in steel plate cross-section

    图 4  钢板横截面的SH导波传播云图

    Figure 4.  Contour plots of SH guided wave propagation in steel plate cross-section

    图 5  13位Barker码脉冲压缩及旁瓣抑制

    Figure 5.  Pulse compression and side-lobe suppression of 13-bit Barker code

    图 6  不同序列长度Barker码对应的激励信号、超声波信号、脉压信号和经旁瓣抑制后的脉压信号

    Figure 6.  Excitation signals, ultrasonic signals, pulse compressed signals, pulse compressed signals after side lobe suppression when Barker code signals with different sequence lengths is used

    图 7  不同码元长度Barker码对应的激励信号、超声波信号、脉压信号和经旁瓣抑制后的脉压信号

    Figure 7.  Excitation signals, ultrasonic signals, pulse compressed signals, pulse compressed signals after side lobe suppression when Barker code signals with different subpulse lengths is used

    图 8  永磁体对数对旁瓣抑制后脉压信号的主瓣宽度和PSL的影响

    Figure 8.  Effect of permanent magnet pairs on main lobe width and PSL of pulse compressed signals after side lobe suppression

    图 9  EMAT实验系统

    Figure 9.  EMAT experimental system

    图 10  EMAT探头和钢板实物图

    Figure 10.  Picture of EMAT probe and steel plate

    图 11  含预制缺陷的钢板试样示意图

    Figure 11.  Schematic diagram of steel plate with prefabricated defects

    图 12  无同步平均时,不同Barker码序列长度对应的旁瓣抑制后的脉压信号

    Figure 12.  Pulse compressed signals after side lobe suppression in correspondence with the Barker codes of different sequence lengths when there is no synchronous average

    图 13  无同步平均时,不同Barker码码元长度对应的旁瓣抑制后的脉压信号

    Figure 13.  Pulse compressed signals after side lobe suppression in correspondence with the Barker code with different subpulse durations when there is no synchronous average

    图 14  单一频率正弦脉冲串激励时,同步平均次数对缺陷波SNR和波包宽度的影响

    Figure 14.  Effect of the synchronous averaging number on the SNR and packet width of the defect echo when the tone-burst excitation is used

    图 15  EMAT提离为1.5 mm和同步平均次数为128时,单一频率正弦脉冲串激励对应的超声波信号

    Figure 15.  Received ultrasonic signals with tone-burst excitation, when life-off is 1.5 mm, and synchronous average is 128

    图 16  EMAT提离对无同步平均、旁瓣抑制后脉压信号及128次平均的单一频率信号的缺陷波信噪比的影响

    Figure 16.  Effect of EMAT lift-off on the SNR of the defect echoes from the pulse-compressed signals after side-lobe suppression with no synchronous average and averaged single frequency signals at 128

    表  1  有限元建模参数

    Table  1.   Parameters in finite element model

    变量数值变量数值
    钢板长度ws/mm300纵波波速/(m·s−15960
    钢板宽度ls/mm100横波波速/(m·s−13260
    钢板高度hs/mm5.6钢板密度/(kg·m−37932
    永磁体间距d/mm7圆孔直径/mm20
    永磁体长度wm/mm20圆孔深度/mm3
    下载: 导出CSV

    表  2  采用不同Barker码激励信号和无同步平均时,2 mm深度圆孔对应的缺陷波SNR

    Table  2.   SNR of the defect echo from 2 mm deep circular hole with different Barker code signals and without synchronous average

    Barker激励信号缺陷波SNR/dB
    序列长度/位码元长度/μs
    51017.7
    71020.7
    13516.3
    131026.5
    131531.4
    下载: 导出CSV
  • [1] HU X W, NG C T, KOTOUSOV A. Scattering characteristics of quasi-Scholte waves at blind holes in metallic plates with one side exposed to water[J]. NDT & E International, 2020, 117: 102379.
    [2] SUNGGO C, HWANJEONG C, CLIFF J L. Nondestructive inspection of spent nuclear fuel storage canisters using shear horizontal guided waves[J]. Nuclear Engineering and Technology, 2018, 50(6): 890-898. doi: 10.1016/j.net.2018.04.011
    [3] ALAN C K, MIGUEL A F, JEAN PIERRE V D W, et al. Interaction of SH guided waves with wall thinning[J]. NDT & E International, 2019, 101: 94-103.
    [4] WEI X, LI G, XIAO L, et al. Shear strength reduction of trapezoidal corrugated steel plates with artificial corrosion pits[J]. Journal of Constructional Steel Research, 2021, 180: 106583. doi: 10.1016/j.jcsr.2021.106583
    [5] RATHOD V T, ROY M D. Ultrasonic Lamb wave based monitoring of corrosion type of damage in plate using a circular array of piezoelectric transducers[J]. NDT & E International, 2011, 44(7): 628-636.
    [6] SAIT S, ABBAS Y, BOUBENIDER F. Estimation of thin metal sheets thickness using piezoelectric generated ultrasound[J]. Applied Acoustics, 2015, 99: 85-91. doi: 10.1016/j.apacoust.2015.05.011
    [7] WEI X Y, YANG Y, YAO W Q, et al. Design of full bridge high voltage pulser for sandwiched piezoelectric ultrasonic transducers used in long rail detection[J]. Applied Acoustics, 2019, 149: 15-24. doi: 10.1016/j.apacoust.2019.01.012
    [8] LEE J H, LEE S J. Application of laser-generated guided wave for evaluation of corrosion in carbon steel pipe[J]. NDT & E International, 2008, 42(3): 222-227.
    [9] GAO T F, SUN H, HONG Y Q, et al. Hidden corrosion detection using laser ultrasonic guided waves with multi-frequency local wavenumber estimation[J]. Ultrasonic, 2020, 108: 106182. doi: 10.1016/j.ultras.2020.106182
    [10] 唐志峰, 孙兴涛, 张鹏飞, 等. 集测厚与导波检测于一体的复合式电磁超声换能器研究[J]. 仪器仪表学报, 2020, 41(9): 98-109. doi: 10.19650/j.cnki.cjsi.J2006440

    TANG Z F, SUN X T, ZHANG P F, et al. Research on composite electromagnetic ultrasonic transducer integrating thickness measurement and guided wave detection[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 98-109(in Chinese). doi: 10.19650/j.cnki.cjsi.J2006440
    [11] 王晓娟, 赵锴, 郑毅. 管道纵向超声导波的对称模态转换特性分析[J]. 仪器仪表学报, 2020, 41(9): 151-160. doi: 10.19650/j.cnki.cjsi.J2006453

    WANG X J, ZHAO K, ZHENG Y. Characteristics of symmetric mode conversion of longitudinal guided-wave modes in pipeline[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 151-160(in Chinese). doi: 10.19650/j.cnki.cjsi.J2006453
    [12] 唐琴, 石文泽, 卢超, 等. 多层螺旋线圈电磁超声换能器优化设计及其实验研究[J]. 中南大学学报(自然科学版), 2020, 51(7): 1792-1803.

    TANG Q, SHI W Z, LU C, et al. Optimization design and experimental study of multi-layer spiral coils electromagnetic acoustic transducer[J]. Journal of Central South University(Science and Technology), 2020, 51(7): 1792-1803(in Chinese).
    [13] 杨理践, 吕瑞宏, 高松巍, 等. 基于SH导波的防腐层能量密度检测机理研究[J]. 仪器仪表学报, 2016, 37(5): 1101-1109. doi: 10.19650/j.cnki.cjsi.2016.05.018

    YANG L J, LYU R H, GAO S W, et al. Research on the detection mechanism of energy density in pipeline coating based on SH wave[J]. Chinese Journal of Scientific Instrument, 2016, 37(5): 1101-1109(in Chinese). doi: 10.19650/j.cnki.cjsi.2016.05.018
    [14] ANDRUSCHAK N, SALETES I, FILLETER T, et al. An NDT guided wave technique for the identification of corrosion defects at support locations[J]. NDT & E International, 2015(75): 72-79.
    [15] 周琛, 何建, 胡暮平, 等. 基于L(0, 2)超声导波的管段结构损伤定位研究[J]. 仪器仪表学报, 2020, 41(12): 181-191.

    ZHOU C, HE J, HU M P, et al. Research on damage location of pipe section based on L ( 0, 2) ultrasonic guided wave[J]. Chinese Journal of Scientific Instrument, 2020, 41(12): 181-191(in Chinese).
    [16] RICCI M, SENNI L, BURRASCANO P, et al. Pulse-compression ultrasonic technique for the inspection of forged steel with high attenuation[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2012, 54(2): 91-95.
    [17] 石文泽, 陈巍巍, 陈尧, 等. 基于脉冲压缩技术的高温连铸坯壳厚度测量EMAT设计及应用[J]. 仪器仪表学报, 2019, 40(8): 119-130. doi: 10.19650/j.cnki.cjsi.J1905323

    SHI W Z, CHEN W W, CHEN Y, et al. Design and application of an EMAT for solidification shell thickness detection in continuous casting slab based on the pulse compression technique[J]. Chinese Journal of Scientific Instrument, 2019, 40(8): 119-130(in Chinese). doi: 10.19650/j.cnki.cjsi.J1905323
    [18] ZHU W, WU H Z. Characterization and analysis of coded excitation ultrasound parameters for rock properties[J]. Chinese Journal of Acoustics, 2017, 36(1): 29-42.
    [19] AN Y, WANG X C, YUE B, et al. A novel method for natural gas pipeline safety online monitoring based on acoustic pulse compression[J]. Process Safety and Environmental Protection, 2019(130): 174-181.
    [20] FU J, WEI G, HUANG Q H, et al. Barker coded excitation with linear frequency modulated carrier for ultrasonic imaging[J]. Biomedical Signal Processing & Control, 2014(13): 306-312.
    [21] ZHOU Z Z, MA B Q, JIANG J T, et al. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing[J]. Nondestructive Testing & Evaluation, 2014, 29(4): 297-314.
    [22] 张慧琳, 宋小军. Barker码激励超声导波在长骨检测中的应用[J]. 声学学报, 2014, 39(2): 257-263. doi: 10.15949/j.cnki.0371-0025.2014.02.013

    ZHANG H L, SONG X J. Application of Barker code excited ultrasonic guided waves to long bone detection[J]. Chinese Journal of Acoustics, 2014, 39(2): 257-263(in Chinese). doi: 10.15949/j.cnki.0371-0025.2014.02.013
    [23] 宋寿鹏, 乔梦丽. 基于NLFM Barker编码的板材焊缝缺陷超声检测方法研究[J]. 仪器仪表学报, 2020, 41(4): 246-254.

    SONG S P, QIAO M L. Research on ultrasonic testing of plate weld flaw based on NLFM Barker coded excitation method[J]. Chinese Journal of Scientific Instrument, 2020, 41(4): 246-254(in Chinese).
    [24] ISLA J, CEGLA F. Coded excitation for pulse-echo systems[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2017, 64(4): 736-748.
    [25] 王强, 毛捷, 李威, 等. 橡胶-钢粘接结构的谐振超声编码检测方法[J]. 机械工程学报, 2020, 56(20): 22-27. doi: 10.3901/JME.2020.20.022

    WANG Q, MAO J, LI W, et al. Resonant ultrasonic coded method for rubber-steel bonded structure[J]. Chinese Journal of Mechanical Engineering, 2020, 56(20): 22-27(in Chinese). doi: 10.3901/JME.2020.20.022
    [26] 赵晓群. 11位Barker码性能研究[J]. 系统工程与电子技术, 1997, 19(6): 56-58. doi: 10.3321/j.issn:1001-506X.1997.06.014

    ZHAO X Q. Study on 11 bits Barker code performances[J]. Journal of Systems Engineering and Electronics, 1997, 19(6): 56-58(in Chinese). doi: 10.3321/j.issn:1001-506X.1997.06.014
    [27] 李汛江, 苏凡凡, 赵正予. 电离层探测仪回波能量积累算法[J]. 中南大学学报(自然科学版), 2011, 42(12): 3777-3783.

    LI X J, SU F F, ZHAO Z Y. Energy accumulation algorithms for ionosonde[J]. Journal of Central South University(Science and Technology), 2011, 42(12): 3777-3783(in Chinese).
    [28] 王强, 毛捷, 丁晓东, 等. 衰减匹配的超声Barker码激励方法[J]. 声学学报, 2020, 45(2): 227-234. doi: 10.15949/j.cnki.0371-0025.2020.02.009

    WANG Q, MAO J, DING X D, et al. Ultrasonic Barker-code excitation method with attenuation matching[J]. Chinese Journal of Acoustics, 2020, 45(2): 227-234(in Chinese). doi: 10.15949/j.cnki.0371-0025.2020.02.009
    [29] RIHACZEK A W, GOLDEN R M. Range sidelobe suppression for Barker codes[J]. IEEE Transactions on Aerospace & Electronic Systems, 1971(6): 1087-1092.
    [30] POUYAN K, PETER C. The choice of ultrasonic inspection method for the detection of corrosion at inaccessible locations[J]. NDT & E International, 2018, 99: 80-92.
    [31] HUANG S L, ZHAO W, ZHANG Y S, et al. Study on the lift-off effect of EMAT[J]. Sensors and Actuators A:Physical, 2009, 153(2): 218-221. doi: 10.1016/j.sna.2009.05.014
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  67
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 录用日期:  2021-05-28
  • 网络出版日期:  2021-06-15
  • 整期出版日期:  2023-02-28

目录

    /

    返回文章
    返回
    常见问答